COMMISSION
Washington, DC 20549

FORM 8-K

CURRENT REPORT
Pursuant to Section 13 or 15(d)
of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): February 9, 2015

SORRENTO THERAPEUTICS, INC.
(Exact name of registrant as specified in its charter)

Delaware 001-36150 33-0344842
(State or other jurisdiction (Commission IRS Employer
of incorporation or organization) File Number) Identification No.)

6042 Cornerstone Ct. West, Suite B
San Diego, CA 92121
(Address of principal executive offices)

Registrant’s telephone number, including area code: (858) 210-3700

(Former name or former address, if changed since last report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

☐ Written communication pursuant to Rule 425 under the Securities Act (17 CFR 230.425)
☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)
☐ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))
☐ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))
Item 8.01 Other Events.

Sorrento Therapeutics, Inc. intends to conduct meetings with third parties in which its corporate slide presentation will be presented. A copy of the presentation materials is attached as Exhibit 99.1 to this Current Report on Form 8-K and is incorporated herein by reference.

Item 9.01 Financial Statements and Exhibits.

(d) Exhibits.

99.1 Sorrento Therapeutics, Inc. Corporate Presentation
Pursuant to the requirements of the Securities Exchange Act of 1934, the Registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Dated: February 9, 2015

SORRENTO THERAPEUTICS, INC.

By: /s/ Henry Ji
Name: Henry Ji
Title: President and Chief Executive Officer
This presentation contains forward-looking statements, as that term is defined under the Private Securities Litigation Reform Act of 1995 (PSLRA), including statements regarding our business, technology, and strategies or prospects. Such forward-looking statements are characterized by future or conditional verbs such as "may," "will," "expect," "intend," "anticipate," "believe," "estimate," and "continue" or similar technological and products, including Cynviloq™ and all other matters described in the Company’s filings with the Securities and Exchange Commission, including those set forth therein. These statements are made based on current expectations that are subject to risk and uncertainty and information available to the Company as of the date of this presentation. The Company does not undertake to update forward-looking statements in this presentation to reflect events or circumstances after the date of this presentation, including changes in assumptions or the occurrence of unanticipated events. Assumptions and other information that could cause results to differ from those projected can be found in the Company’s filings with the Securities and Exchange Commission, including our most recent periodic report. We caution you not to place undue reliance on forward-looking statements, which speak only as of the date of this presentation. The Company’s actual results may differ materially from those projected due to a number of risks and uncertainties, including, but not limited to, the possibility that some or all of the pending matters and transactions being considered by the Company may not proceed as contemplated, as well as risks inherent in additional financing, developing and obtaining regulatory approvals of new, commercially-viable and competitive products and product candidates, including timelines, the size of clinical trials, sufficiency of data from those trials and the requirements of the FDA for potential approval of Cynviloq™ and all other matters described in the Company’s filings with the Securities and Exchange Commission.
A Comprehensive Oncology Company

CYNVILOQ™
MYC inhibitor
TRAIL modulator

Immuno- and Targeted Therapies
Adaptive Cellular Immunotherapy
Bispecific Abs
PD-1, PD-L1, CTLA-4

Rixon – Intractable Cancer Pain

RTX

Significant reduction in clinical development costs and timeline
Novel breakthrough combination therapeutic regimens and modalities to attack cancer

Deep and Complementary Pipeline Creates Significant Opportunities
Corporated Events Validate and Advance Sorrento Pipeline Unlocking Significant Value

Corporated Events Validate and Advance Sorrento

4

Conjugates (ADCs) with MorphoTec / Eisai

Exclusive research and option agreement to generate and develop antibody-drug

Pharmaceuticals for greater Chinese market

Licensing agreement to develop and commercialize anti-PD-L1 mAb with Lee's

autimmune disease.

Pharmaceuticals for the treatment of cancer and

Shuang to develop next generation immunotherapies for the treatment of cancer and

First joint venture with NantWorks and Abraxis Biocience Inc. founder, Dr. Patrick Soon-

exclusive global partnership with Conkwest to develop next generation immunotherapies for the treatment of cancer and

G-MAB ADC licensing agreement to develop and commercialize anti-PD-L1 mAb with Lee's

Exclusive research and option to generate and develop antibody-drug

Cellular Immunotherapy with "Off-the-Shelf" CAR-TNK™ (Chimeric Antigen Receptor

Tumor-attacking Neuropilin)

Cellular Immunotherapy with "Off-the-Shelf" CAR-TNK™ (Chimeric Antigen Receptor

Exclusively global partnership with Conkwest to develop next generation anti-cancer

Bioequivalence (BE) between Cynviloq and albumin-bound paclitaxel

Patient enrollment in TRIBECA registration trial completed. Pilot PK suggessts
Deep and Complementary Pipeline Creates Significant Opportunities

TRIBECATM505

Bioequivalence trial versus albumin-bound paclitaxel (Abraxane®)

Bioequivalence trial versus albumin-bound paclitaxel (Abraxane®)
Lead Oncology Product Opportunity

Cynviloq (paclitaxel polymeric micelle)

Registration Trial
Cynviloq: Next Generation Paclitaxel Therapy

- Mean size: ~25 nm
- Mean size: 130 nm
- Mean size: >300 mg/m² (up to 435 mg/m²)

Chemical polymer: Poly(lactide-co-glycol)

Biological polymer: Donor-derived human serum albumin (HSA)

Cremophor EL excipient: Polyoxylated castor oil

- Albumin-bound paclitaxel
- MBC, NSCLC, PC

Conversion of paclitaxel sales + new indications

- Product Sales Peak
- Product Sales $1.6B (WW in 2000)
- $2.2B (2020)

- Maximum Tolerated Dose
- $2.2 B* (2020)
- ~$1.6B (WW in 2000)

- Maximum Tolerated Dose
- 130 mg/m²
- 260 mg/m²

- Maximum Tolerated Dose
- 175 mg/m²
- 435 mg/m²

- Maximum Tolerated Dose
- 25 mg/m²

- Maximum Tolerated Dose
- 25 mg/m²

- Maximum Tolerated Dose
- 25 mg/m²

* Celgene Presentation at JPM Healthcare Conference Jan 2015
Phase 1:
Trials established MTD at >300 mg/m² - Dana Farber Cancer Inst, Russia, & S. Korea (total n=80)

Phase 2:
Completed trials in MBC, NSCLC, PC, OC, BC; in US - Yale Cancer Center, Russia, S. Korea (total n=259)
Possible Phase 3 sNDA programs in these tumor types

Phase 2b:
Chemonaive Stage IIIb/IV NSCLC vs Taxol in S. Korea (total n=276; Cynviloq n=140)
230 mg/m² + cis (q3w) vs. Taxol 175 mg/m² + cis: non-inferiority established

Phase 2:
1st line Treatment of OC vs Taxol in S. Korea (total n=100; Cynviloq n=50)
260 mg/m² + carb (q3w) vs. Taxol 175 mg/m² + carb: non-inferiority established

Phase 3:
MBC in S. Korea (total n=209; Cynviloq n=105 vs Taxol n=104)
GPMBC301: Open-label, Randomized, Parallel Phase 3 Trial to Evaluate the Efficacy and Safety of Cynviloq compared to Genexol-Em

PM-Safety
Completed for MEC and NSCLC (total n=502)
Comparative Phase 3 MBC Clinical Results

Overall Response Rate (%)

China

United States

South Korea

Albunin-Bound Taxol

Albunin-Bound Paclitaxel

Taxol

Cyclolod

p=0.025

p=0.001

p=0.03

n=82

n=87

n=209

n=205

n=104

n=105
Bioequivalence = Accelerated Pathway to Market

TRIBECA™ (TRial establishing BioEquivalence between Cynviloq™ and Albumin-bound paclitaxel) is a trademark owned by Sorrento Therapeutics, Inc.

- **Patients with MBC**

TRIB ECA™

Key Parameters:
- Duration: 3 weeks +
- Infusion time: 30 min
- Dose: 260 mg/m²

- **Endpoints:** AUC and Cmax
 - Cycle 1: Cynviloq
 - Cycle 2: Albumin-bound paclitaxel

Note: Previous trial size estimate of 100 patients was based on PK simulation of albumin-bound paclitaxel and Cynviloq historical data with both drugs given at different doses and infusion rates. Based on the recent positive initial PK data and subject to FDA guidance, 53 patients may be sufficient to establish BE.

Based on the recent positive initial PK data and subject to FDA guidance, 53 patients may be sufficient to establish BE.

- **Dose:** 260 mg/m²
- **Infusion time:** 30 min
- **Duration:** 3 weeks + crossover for 3 weeks

Previous trial size estimate of 100 patients was based on PK simulation of albumin-bound paclitaxel and Cynviloq historical data with both drugs given at different doses and infusion rates. Based on the recent positive initial PK data and subject to FDA guidance, 53 patients may be sufficient to establish BE.
Pilot PK Data Analysis

Comparison of Cynviloq vs. Albumin-Bound Paclitaxel Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>90% CI</th>
<th>Point Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(AUC0-τ) -10</td>
<td>93.98 - 126.58</td>
<td>109.1</td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>93.98 - 126.58</td>
<td>102.5</td>
</tr>
</tbody>
</table>

Log-linear Plot (n=8)

BE Assessment and Sample Size Estimate

Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>90% CI</th>
<th>Point Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(AUC0-τ) -10</td>
<td>93.98 - 126.58</td>
<td>109.1</td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>93.98 - 126.58</td>
<td>102.5</td>
</tr>
</tbody>
</table>

BE vs. Albumin-Bound Paclitaxel

Pilot PK Data Analysis Suggest
TRIBeca Patient Enrollment Completed

- Patients from recruited from sites in East Europe, USA and Asia
- Total 111 patients enrolled (expanded safety data)
- Initial reported AEs consistent with historical nab-paclitaxel toxicity profile
Estimated Timeline and Next Steps

First patient dosed: March 31, 2014

Last patient in: January 2015

NDA filing: Q3 2015

Product launch (MBC and NSCLC): 2016

FDA Approval: 2016

NDA Filing: 2016

BE Study: 2014

LAUNCH

Estimated, subject to discussions with the FDA.
Intractable Cancer Pain

Resiniferatoxin (RTX): A Novel, Non-opioid Analgesic
Intrathecal: Injection into the cerebrospinal fluid space

Intravaginal: Injection into or near the dorsal root ganglion

Cross Sections of spinal cord

Absence of TRPV1-positive cells after RTX treatment

TRPV1-positive cells (dark brown)

Two Injection Sites = Two Products for Human Use

Adapted from Karai et al., 2004
RESULTS

- Increased activity
- Improved pain scores with injection (n=2)
- 100% of non-ambulatory patients could walk post-injection
- All 6 patients had near complete relief post-treatment

DESIGN OVERVIEW

Sponsored Trial

Summary of Interim Data from the Phase 1/2 NIH

6 advanced cancer patients with severe refractory pain received a single injection of RTX:

- Neuropathic pain, visceral, and bone pain from bone metastases
- MTD not reached, additional dose being explored
- No unexpected toxicities

Clinically meaningful improvement in QoL
- Improved pain scores with increased activity
- 49-61 years: 4 M/2 F, MBC, H&N, pancreatic, lymphoma, SCLC, endometrial cancer
Next Steps for RTX Development

~3 years for clinical development

- Complete intractable cancer pain clinical Phase 1/2 trial (intrathecal injection) under Sorrento IND; n=45-60 patients; optimization of dosing study

End of Phase 2 meeting with FDA (for intrathecal injection)

Phase 1/2 trial(s) (intrathecal injection)

Initiate Phase 3 (intrathecal injection)

End of Phase 2 meeting with FDA (for intrathecal injection)

- Complete intractable cancer pain clinical Phase 1/2 trial (intrathecal injection) under Sorrento IND; n=45-60 patients; optimization of dosing study

OBJECTIVES for 2015 and 2016

- Initiate Phase 3 (intrathecal injection)

- End of Phase 2 meeting with FDA (for intrathecal injection)
G-MAB: Library of Therapeutic Antibodies

High Value Oncology Targets:
- Immune modulation: PD-1, PD-L1, CD47

Antibody Drug Conjugates:
- VEGFR2, c-Met

Size of Target Antigen

Proprietary technology:
- RNA amplification used for library generation

Freedom-To-Operate:
- No stacking royalties

Ideal for CAR-Generation
- High successful screening hit rate
- Fully human antibodies
- 2.1 x 10^6 distinct antibodies
- Very high library diversity

Most Difficult Targets:
- G Protein-Coupled Receptors (GPCRs)

Small Peptides

Difficult Targets:
- G Protein-Coupled Receptors (GPCRs)
- Small Peptides
- G Protein-Coupled Receptors (GPCRs)
- Small Peptides

No stacking royalties

Freedom-To-Operate
- RNA amplification used for library generation
- Proprietary technology

19
Anti-PD-L1 mAb Exhibits Potent Activity

*Tumor Mouse Model**

Competitor mAb

Sorrento mAb

Day

Tumor Growth Inhibition (%)

IL-2 (pg/mL)

IFN-γ (pg/mL)

T Cell Activation (%)

*p < 0.05, mean tumor volumes are significantly reduced in STI-41010 group versus control groups as determined by Mann-Whitney u-test.

** xenoraft model using H1975 human NSCLC cells; % inhibition relative to control mAb treatment.

*** mAbs @ 0.05 mg/ml.
Anti-PD1 mAb Exhibits Excellent Activity

Target Specificity

Immune Modulation

Competitor mAb

Sorrento mAb

Control

Human

PD1

Cyno

PD1

Human

CTLA-4

Human

CD28

Human

ICOS

PBS control
K-Lock and C-Lock Conjugation Enable Homogeneous ADCs

C-Lock

- Enhances ADC stability
- Prolongs PK profile
- Reduces off-target effects

C-Lock conjugation

K-Lock conjugation

Maleimide conjugation

Drug-antibody linkage not stable
Desribilizers and antibody structure destabilizes

K-Lock chemistry

Proprietary

Current Industry

Serendipous homogeneous ADCs

Enzymatic post-translational modification
Genetic re-engineering
Non-natural amino acids
No need for

Maleimide conjugation

C-Lock

Altered PK profile
Off-target drug effects

<table>
<thead>
<tr>
<th>EC50 (pM)</th>
<th>Cancer</th>
<th>Her-2</th>
<th>DMI</th>
<th>MMAD</th>
<th>Duostatin 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.44</td>
<td>SKOV-3</td>
<td>+++</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>OE-19</td>
<td>+++</td>
<td></td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>2.60</td>
<td>N87</td>
<td>+++</td>
<td></td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>MDA-MB-175</td>
<td>+++</td>
<td></td>
<td>1.348</td>
<td>Breast</td>
</tr>
<tr>
<td>4.52</td>
<td>MDA-MB-453</td>
<td>++</td>
<td></td>
<td>1.977</td>
<td>Breast</td>
</tr>
<tr>
<td>3.32</td>
<td>HCC149</td>
<td>+++</td>
<td></td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>3.64</td>
<td>ZR75</td>
<td>+++</td>
<td></td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>MDA-MB-361</td>
<td>+++</td>
<td></td>
<td>151</td>
<td>Breast</td>
</tr>
<tr>
<td>2.14</td>
<td>BT474</td>
<td>+++</td>
<td></td>
<td>126</td>
<td>Breast</td>
</tr>
<tr>
<td>6.8</td>
<td>HCC1954</td>
<td>+++</td>
<td></td>
<td>78</td>
<td>Breast</td>
</tr>
<tr>
<td>3.0</td>
<td>SEK3</td>
<td>+++</td>
<td></td>
<td>95</td>
<td>Breast</td>
</tr>
</tbody>
</table>

Trastuzumab was used as targeting mAb.
In Vivo Proof-of-Concept of Sorrento ADCs

C-MET-ADC STI-D0602

VEGFR2-ADC STI-D0168

U87 xenograft: dosing twice weekly; maytansinoid drug conjugates

A431 squamous-cell carcinoma cells; indicates dosing

q

U87 xenograft: dosing twice weekly; maytansinoid drug conjugates

A431 squamous-cell carcinoma cells; indicates dosing

Day

Day

Tumor Volume (mm³)

Tumor Volume (mm³)
Independent company focused on advancing next generation immunotherapies against cancer and auto-immune diseases.
AN EXCLUSIVE JOINT PARTNERSHIP
Advancing Cellular Immunotherapy

Beyond CAR-T Cell Therapies

Proprietary technologies with
GMP in a Box production
(©without use of lentiviruses)
Proprietary gene insertion
Advanced proteomics platform

Hi
gh successful screening rate

Vast diversity human antibody

FTO

Neukoplast® NK cell line

G-MAB

Hi
gh successful screenin
g rate

solid

No clinical DLTs/SAEs in
over 40 patients treated

solid and liquid tumors
Broad anti-cancer activity in
(„off-the-shelf“)

«Neukoplast® NK cell line

High

G-MAB

Vast diversity human antibody

Hi
gh successful screening rate

neuroplast® NK cell line

27
<table>
<thead>
<tr>
<th></th>
<th>CAR.TNK</th>
<th>CAR-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>High: Requiring individual patient</td>
<td></td>
<td>Large scale bioreactor</td>
</tr>
<tr>
<td>Low: Large scale bioreactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low: Large scale bioreactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good: On-target / off-tumor effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor: Cytokine release syndrome, ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broad: Multiple MOAs, targeting and killing through CAR-dependent and innate mechanisms (off-target / on-tumor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited: Multiple MOAs, targeting and killing tumors (CD80, CD86) not present in many solid tumors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transduction & expression</td>
<td>Variable %: Variable CAR</td>
<td>100% of cells expressing CAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive Procedure/Leukapheresis</td>
<td>CAR-T-modified Neuropsychiatric cells (intrathecal)</td>
<td>CAR-T-modified Neuropsychiatric cells (intrathecal)</td>
</tr>
<tr>
<td>Simple: Off-the-shelf universal product</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unmodified Neukoplast Clinically Validated in Several Phase 1 Studies
Co-cultured with Neukoplast (7 days) → no proliferation

Lymphocytes from 2 healthy donors co-cultured with each other → vigorous proliferation

Mixed Lymphocyte Reaction (MLR) Culture Assay

Neukoplast do not stimulate allogeneic T cells
CAR.TNK: CAR-modified Neukoplast

Clonal cell lines expressing one or more CARs to establish a range of distinct products

Multiple killing mechanisms - CAR-targeted as well as broad intrinsic anti-cancer activity of Neukoplast ("off-target/on-tumor")

Engages the adaptive immune system through cytokine secretion and immune cell recruitment

Titratable: Repeat dosing option; controllable dose exposure to manage safety risk
Serial Killing of HER2+ Cells by HER2.TNK Cells

Selective cytotoxicity (spares normal cells)

Even after gamma radiation with 10 Gy

"Serial killing" of HER2+ target cells

Growth inhibition and killing correlate with HER2 expression levels

Inhibition of HER2+ RCC metastasis

Homing to HER2 expressing tumors

IN VIVO PRECLINICAL MOUSE DATA

Serial Killing of HER2+ Cells by HER2.TNK Cells
Her2.TNK Demonstrate Tumor Homin and Potent Anti-Glioma Activity in Mice

Schoenfeld et al. Mol Therapy, in press

Tumor homing of CAR.TNKs xenografts in NSG mice Intracranial LN-319 glioblastoma

Anti-Glioma Activity in Mice Her2.TNK Demonstrate Tumor Homing and Potent
Prospectiving CAR.TNKs for Development

Target

Target

Profit sharing on all CAR.TNKs

Commercialization

Regulatory filings, and all pre-clinical and clinical development.

Lead company will be responsible for

Steering Committee

CAR targets jointly selected by the Steering Committee

(Target) (Initial List)

Prospectiving CAR.TNKs for Development
Next Steps for CAR.TNK Development

2015

H1 2015
Generation of CARs

H2 2015
Generation and evaluation of stable CAR.TNK cell lines

2016
IND-enabling studies, IND submission, and initiation of Phase 1 studies
A Comprehensive Oncology Company