UNITED STATES
SECURITIES AND EXCHANGE COMMISSION
Washington, DC 20549

FORM 8-K

CURRENT REPORT
Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): January 12, 2015

SORRENTO THERAPEUTICS, INC.
(Exact name of registrant as specified in its charter)

Delaware
(State or other jurisdiction of incorporation or organization)

001-36150
(Commission File Number)

33-0344842
(IRS Employer Identification No.)

6042 Cornerstone Ct. West, Suite B
San Diego, CA 92121
(Address of principal executive offices)

Registrant’s telephone number, including area code: (858) 210-3700

(Former name or former address, if changed since last report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

☐ Written communication pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

☐ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))

☐ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))
Item 8.01 Other Events.

On January 12, 2015, Sorrento Therapeutics, Inc. (the “Company”) announced that over 80 patients randomized in the ongoing TRIBECA™ (TRial establishing bioequivalence [BE] between Cynviloq™ and Albumin-bound paclitaxel®) registrational trial have been dosed. The Company intends to continue enrolling all qualified patients in the current screening process and anticipates having the “last patient in” by the end of January. A copy of the press release is attached as Exhibit 99.1 and incorporated herein by reference.

The Company intends on making presentations to third parties using the corporate presentation attached as Exhibit 99.2 and incorporated herein by reference.

Item 9.01. Financial Statements and Exhibits.

(d) Exhibits.

The following exhibits are filed with this Current Report on Form 8-K:

<table>
<thead>
<tr>
<th>Exhibit No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.2</td>
<td>January 2015 Corporate Presentation of Sorrento Therapeutics, Inc.</td>
</tr>
</tbody>
</table>

SIGNATURE

Pursuant to the requirements of the Securities Exchange Act of 1934, the Registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Dated: January 12, 2015

SORRENTO THERAPEUTICS, INC.

By: /s/ Henry Ji
 Name: Henry Ji
 Title: President and Chief Executive Officer
Sorrento Provides Status Update on the Cynviloq™ Registrational TRIBECA™ Study

San Diego, CA (Jan. 12, 2015) — Sorrento Therapeutics, Inc. (NASDAQ: SRNE; Sorrento), an oncology company developing new treatments for cancer and associated pain, announced today that over 80 patients randomized in the ongoing TRIBECA™ (TRIal establishing bioequivalence [BE] between Cynviloq™ and Albumin-bound paclitaxel*) registrational trial have been dosed. Sorrento intends to continue enrolling all qualified patients in the current screening process and anticipates having the “last patient in” by the end of January. Patients were recruited globally from over 20 sites in USA, Eastern Europe, and Asia. The initial safety assessment from treated patients revealed no unexpected adverse events and the data is consistent with the toxicity profile reported in the literature with albumin-bound paclitaxel.

Previously, Sorrento announced positive pharmacokinetic (PK) data from the first eight (8) patients enrolled in the TRIBECA study. Based on our reported positive data, sample size estimates suggest that only 53 patients are needed to meet regulatory guidelines for BE.

“We are pleased with the imminent completion of the TRIBECA study” said Henry Ji, Ph.D., President and Chief Executive Officer of Sorrento. “Our plan is to continue to enroll patients until the end of January to have a robust safety database of patients treated with Cynviloq (paclitaxel nanoparticle polymeric micelle) at 260 mg/m² infused over 30-minutes. The completion of patient enrollment in January will allow us to make topline pharmacokinetic results available in March, and facilitate the planned NDA submission to the FDA seeking marketing approval for Cynviloq.”
About Sorrento Therapeutics, Inc.

Sorrento is an oncology company developing new treatments for cancer and associated pain. Sorrento's most advanced asset Cynviloq™, the next-generation nanoparticle paclitaxel, commenced its registrational trial in March 2014 and is being developed under the abbreviated 505(b)(2) regulatory pathway. Sorrento is also developing RTX, a non-opiate TRPV1 agonist currently in a Phase 1/2 study at the NIH to treat terminal cancer patients suffering from intractable pain. The company has made significant advances in developing human monoclonal antibodies, complemented by a comprehensive and fully integrated antibody drug conjugates (ADC) platform that includes proprietary conjugation chemistries, linkers and toxic payloads. Sorrento's strategy is to enable a multi-pronged approach to combating cancer with small molecules, mono- and bi-specific therapeutic antibodies, ADCs and CAR.TNK™ cells.

The company recently signed a definitive agreement with NantWorks to form a global joint venture – “The Immunotherapy Antibody JV” company- to focus on next generation cancer and autoimmune diseases immunotherapies. Sorrento also entered into a definitive agreement with Conkwest, Inc., a privately-held immuno-oncology company developing proprietary Neukoplast®, a Natural Killer (NK) cell-line based therapy, to jointly develop next generation CAR.TNK (Chimeric Antigen Receptor Tumor-attacking Neukoplast®) immunotherapies for the treatment of cancer. The CAR.TNK technology platform combines Conkwest’s proprietary Neukoplast cell line with Sorrento’s proprietary G-MAB® fully human antibody technology and CAR designs to further enhance the potency and targeting of Neukoplast. Under the terms of the agreement, Sorrento and Conkwest will establish an exclusive global strategic collaboration focused on accelerating the development of CAR.TNK cell lines for the treatment of hematological malignancies as well as solid tumors. Both companies will jointly own and share development costs and revenues from any developed CAR.TNK cell line products.

*Abraxane® (paclitaxel albumin-bound particles for injectable suspension) (albumin-bound), registered trademark of and marketed by Celgene Corp.

Cynviloq, G-MAB, CAR.TNK, Chimeric Antigen Receptor Tumor-attacking Neukoplast and TNK are trademarks owned by Sorrento Therapeutics, Inc.

Neukoplast, Neukopanel and NK-92 are trademarks owned by Conkwest, Inc.

Forward-Looking Statements

This press release contains forward-looking statements related to Sorrento Therapeutics, Inc. under the safe harbor provisions of Section 21E of the Private Securities Litigation Reform Act of 1995 and subject to risks and uncertainties that could cause actual results to differ materially from those projected. Forward-looking statements include statements about Sorrento’s Cynviloq registrational trial; Sorrento’s advances made in developing RTX and human monoclonal antibodies using its proprietary G-MAB fully human antibody technology, if any; and other matters that are described in Sorrento’s Annual Report on Form 10-K for the year ended December 31, 2013, and subsequent Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commission, including the risk factors set forth in those filings. Investors are cautioned not to place undue reliance on these forward-looking statements, which speak
only as of the date of this release and we undertake no obligation to update any forward-looking statement in this press release except as required by law.

Sorrento Contact:
Mr. George Uy
EVP & Chief Commercial Officer
Sorrento Therapeutics, Inc.
guy@sorrentotherapeutics.com
T: + 1 (661) 607-4057
This presentation contains "forward-looking statements" as that term is defined under the Private Securities Litigation Reform Act of 1995 (PSLRA) including statements regarding expectations, beliefs, or intentions regarding our business, technologies, and products, strategies, or prospects. Such forward-looking statements are characterized by future or conditional verbs such as "may," "will," "expect," "intend," "anticipate," "estimate," "believe," "continue," and similar verbs.

Actual results may differ from those projected due to a number of risks and uncertainties, including but not limited to the possibility that some or all of the pending matters and transactions being considered by the Company may not proceed as contemplated or that other factors may affect such forward-looking statements. In this presentation, to reflect actual results, changes in assumptions or changes in other factors, information available to the Company, or the date of this presentation, the Company does not undertake to update information, forward-looking statements in this presentation to reflect actual results or changes in assumptions or changes in other factors. These statements are made based upon current expectations that are subject to risk and uncertainty. Assumptions and other information that could cause results to differ from those forward-looking statements can be found in the Company's filings with the Securities and Exchange Commission, including the risk factors set forth in those filings.
A Comprehensive Oncology Company

Deep and Complementary Pipeline Creates Significant Opportunities

Significant commercial edge in future drug pricing
Significant reduction in clinical development costs and timelines
Novel breakthrough combination therapeutic regimens and modalities to attack cancer

&Caps;2020 Pioneer Oncology, Inc. All Rights Reserved. Certain trademarks are owned by Sorrento Therapeutics, Inc. and Conkwest, Inc.
Corporate Events Validate and Advance Sorrento Pipeline Unlocking Significant Value

Exclusive global partnership with Conkwest to develop next generation anti-cancer cellular immunotherapy with "Off-the-Shelf" CAR-TNK™ (Chimeric Antigen Receptor Tumor-attacking NeuKoplast)

The First joint venture with NantWorks and Abraxis BioScience Inc founder Dr Patrick Shiong to develop next generation immunotherapies for the treatment of cancer and autoimmune disease.

Pilot PK data from TRIBECA study suggest bioequivalence (BE) between Cynviloq and albumin-bound paclitaxel.

Licensing agreement to develop and commercialize anti-PD-L1 mAb with Lee’s Platinum-bound paclitaxel.

Pilot PK data from TREDGARD study suggest bioequivalence (BE) between Cynviloq and albumin-bound paclitaxel.

Exclusive research and option agreement to generate and develop antibody-drug conjugates (ADCs) with MorphoTech / Eisai.

Pharmaceuticals for greater Chinese Market

First joint venture with NantWorks and Abraxis Biosciences Inc. Founder Dr. Patrick Soon-Shiong.

Exclusive global partnership with Conkwest to develop next generation anti-cancer cellular immunotherapy with "Off-the-Shelf" CAR-TNK™ (Chimeric Antigen Receptor Tumor-attacking NeuKoplast).
<table>
<thead>
<tr>
<th>INDICATION</th>
<th>TARGET</th>
<th>PHASE 3</th>
<th>PHASE 2</th>
<th>PHASE 1</th>
<th>PRECLINICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T>RIBCEA</td>
<td>MET</td>
<td>VEGFR2, G-MET, CXCR4</td>
<td>ADC</td>
<td>CAR-TNX</td>
<td>RTX</td>
</tr>
<tr>
<td>MYC Inhibitor</td>
<td>PD-1/L1/CTLA-4, PD-1/L1/EGRF</td>
<td>PD-1/L1, PD-1/L1/CTLA-4</td>
<td>PDL1, PD-1/L1/CTLA-4, PDL1/EGFR</td>
<td>PD-1/L1, CD137</td>
<td>G-MAB</td>
</tr>
<tr>
<td>Non-Small Cell Lung Cancer</td>
<td>Solid tumors and hematological malignancies</td>
<td>Immuno-oncology</td>
<td>Bi-Specific Ab</td>
<td>E-MAB</td>
<td>CD137</td>
</tr>
<tr>
<td>Metastatic Breast Cancer</td>
<td>Intractable Cancer Pain</td>
<td>505(d)2 Biologics Versus nab-Paclitaxel</td>
<td>TRIBEC</td>
<td>CYNVILCO</td>
<td>CD137</td>
</tr>
</tbody>
</table>

Notes:
- Abraxane® (albumin-bound paclitaxel) is a registered trademark of and marketed by Celgene Corp.
- PDL1, PD-1/L1/CTLA-4, PD-1/L1/EGFR, PD-1/L1/CD137, are trademarks owned by Sorrento Therapeutics, Inc.
- PDL1/L1/CTLA-4 is registered trademark of and marketed by Celgene Corp.
- Abraxane® (albumin-bound paclitaxel) is a registered trademark of and marketed by Celgene Corp.
- Abraxane® (albumin-bound paclitaxel) is a registered trademark of and marketed by Celgene Corp.
- Abraxane® (albumin-bound paclitaxel) is a registered trademark of and marketed by Celgene Corp.
- Abraxane® (albumin-bound paclitaxel) is a registered trademark of and marketed by Celgene Corp.
Lead Oncology Product Opportunity

Cynviloq (Paclitaxel polymeric micelle)

Registration Trial
Cynviloq: Next Generation Paclitaxel Therapy

1st Generation
- Taxol®
- Cremophor EL excipient: 175 mg/m² ~ $1.6B (WW in 2000)
- Polyoxyethylated castor oil

2nd Generation
- Albumin-bound paclitaxel
- Donor-derived human serum albumin (HSA)
- Mean size: 130 nm
- 260 mg/m² ~ $1.5-2.0B (2017)

3rd Generation
- Cynviloq: Paclitaxel polymeric micelle
- Poly-lactide and polyethylene glycol diblock copolymer
- Mean size: ~25 nm
- Conversion of paclitaxel sales + new indications
- 200 mg/m²
- Maximum Tolerated Dose: 300 mg/m²
- Product Sales ~ $1.6B (WW in 2000)

Celgene Presentation at UBS Global Healthcare Conference May 19, 2014 pp 9-7
<table>
<thead>
<tr>
<th>Phase 3: GPMBC301 An Open-label Randomized Parallel Phase 3 Trial to Evaluate the Efficacy and Safety of Cynviloq compared to Genexol® (Paclitaxel with Cremophor EL) in Subjects with Recurrent or Metastatic Breast Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-Safety: Completed for MBC and NSCLC (total n=502)</td>
</tr>
<tr>
<td>Phase 3: Safety: Completed for MBC and NSCLC (total n=502)</td>
</tr>
<tr>
<td>Phase 2: Chemotherapy naive Stage IIIIB/IV NSCLC vs Taxol in S. Korea (total n=700; Cynviloq n=350; Taxol n=350) 230 mg/m² + cis (q3w) vs Taxol 175 mg/m² + cis; non-inferiority established</td>
</tr>
<tr>
<td>Phase 2: First line treatment of OC vs Taxol in S. Korea (total n=100; Cynviloq n=50) 260 mg/m² + carbo (q3w) vs Taxol 175 mg/m² + carbo; non-inferiority established</td>
</tr>
<tr>
<td>Phase 1: Complete trials in MBC NSCLC PC OC BC; in US — Yale Cancer Center; Russia; S. Korea (total n=259)</td>
</tr>
<tr>
<td>Phase 1: MTD established MTD at 1,260 mg/m² - Dana Farber Cancer Inst; Russia; S. Korea</td>
</tr>
<tr>
<td>Total number of patients across all trials: 1,260</td>
</tr>
</tbody>
</table>
Comparative Phase 3 MBC Clinical Results

Overall Response Rate (%)

- Trieu et al. 2013 IG 001 for Metastatic Breast Cancer
- Interim Analysis of a Phase 3 Trial on Nanomedicine Conference Sydney, Australia

![Bar Chart](chart.png)

- China
- United States
- South Korea

Overall Response Rate (%)

- Albumin-Bound Paclitaxel
- Taxol
- Cytoxan

Statistical Significance:
- p=0.025
- p=0.001
- p=0.03
Pilot PK Data Analyses Suggest BE vs Albumin Bound Paclitaxel

Log linear Plot (n=8)

BE Assessment and Sample Size Estimate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ln(Cmax)</th>
<th>Ln(AUC)</th>
<th>Ln(AUC) 90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynviloq</td>
<td>102.5</td>
<td>126.5</td>
<td>919 - 398</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>109.1</td>
<td>126.3</td>
<td>98 - 126.5</td>
</tr>
</tbody>
</table>

Ratio of Cynviloq/Paclitaxel

<table>
<thead>
<tr>
<th>Ln(AUC) 90% CI</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9 - 126.5</td>
<td>53.98 - 913.1</td>
</tr>
</tbody>
</table>

Point estimate N = 53 with 90% power
Bioequivalence = Accelerated Pathway to Market

TRIBECA™

TRIAL Establishing Bioequivalence between Cynviloq™ and Albumin-bound paclitaxel)

- Patients with MBC

Key Parameters:

- Cycle 1
 - Dose: 260 mg/m²
 - Infusion time: 30 min
 - Duration: 3 weeks
 - Crossover: 3 weeks
 - Endpoints: AUC and Cₘₐₓ

- Cycle 2
 - Dose: 270 mg/m²
 - Infusion time: 30 min
 - Duration: 3 weeks

Note: Previous trial size estimate of 100 patients was based on PK simulation of albumin-bound paclitaxel and Cynviloq; historical data with both drugs given at different doses and infusion rates. Based on the recent positive initial PK data and subject to FDA guidance, 53 patients may be sufficient to establish BE.

Cynviloq, Albumin-bound paclitaxel, and the other trademarks are owned by Sorrento Therapeutics, Inc.

TRIBECA™ (TRIAL Establishing Bioequivalence between Cynviloq™ and Albumin-bound paclitaxel) is a trademark owned by Sorrento Therapeutics, Inc.
TRIBECA Patient Enrollment On Track

20 sites (East Europe, USA, Asia) actively recruiting patients

Target 54 MBC patients to establish BE exceeded in Dec 2014
Recruitment to continue till Jan 2015 for expanded safety database

Initial reported AEs consistent with historical nab-paclitaxel toxicity profile

Active Sites and Patient Enrollment

Active Sites

Enrolled Patients

54 pts

Active Sites and Patient Enrollment

Active Sites

Enrolled Patients
Estimated Timeline and Next Steps

First patient dosed: March 31, 2014
Last patient in: January 2015
NDA filing: Q3 2015
Product launch (MBC and NSCLC): 2016

*Estimates subject to discussions with the FDA.
Resiniferatoxin (RTX): A Novel, Non-opiate Analgesic
Two Injection Sites =

Two Products for Human Use

Intraganglionic: injection into or

Intrathecal: injection into the

cerebrospinal fluid space

near the dorsal root ganglion

Absence of TRPV1-positive cells after RTX treatment

Adapted from Kamel et al., 2004

Cross Sections of spinal cord

TRPV1-positive cells (dark brown)

Cross Sections of Dorsal root ganglion

Two Products for Human Use =

Two Injection Sites =
Summary of Interim Data from the Phase 1/2 NIH Sponsored Trial

DESIGN OVERVIEW
6 advanced cancer patients with severe refractory pain received a single injection of RTX: neuropathic pain, visceral and bone pain related to bone metastases (49-61 years; 4 M/2 F MBC, H&N, pancreatic, lymphoma, SCLC, endometrial cancer).

RESULTS
- Improved pain scores with increased activity
- Complete relief post-injection (n=2)
- All 6 patients had near 100% of non-ambulatory MTD not reached
- Clinically meaningful improvement in QOL
- No unexpected toxicities

Optimization being explored: additional dose, additional injection, improved activity.
Next Steps for RTX Development

- Complete intractable cancer pain clinical Phase 1/2 trial (intrathecal injection) under Sorrento IND; n=45-60 patients; optimization of dosing study
 - End of Phase 2 meeting with FDA (for intrathecal injection)
 - Phase 1/2 trial(s) (intrathecal injection)
 - Initiate Phase 3 (intrathecal injection)

- End of Phase 2 meeting with FDA (for intraganglionic injection)

- Complete intractable cancer pain clinical Phase 1/2 trial (intrathecal injection) under Sorrento IND; n=45-60 patients; optimization of dosing study
- OBJECTIVES
 - End of Phase 2 meeting with FDA (for intrathecal injection)
 - Phase 1/2 trial(s) (intrathecal injection)
 - Initiate Phase 3 (intrathecal injection)

- ~3 years for clinical development

- 2015 and 2016

- 2015 and 2016
Immunotherapy Programs

G-MAB + Neukoplast + Proprietary Toxins & Conjugation Chemistries
G-MAB: Library of Therapeutic Antibodies

Very high library diversity:

- Proprietary technology: 2.1×10^{16} distinct antibodies
- RNA amplification used for library generation

Freedom To Operate:

- High successful screening hit rate (over 70 targets screened)

No stacking royalties:

- Ideal for CAR-Generation
- High successfull screening Hit rate
- Fully human antibodies
- Very high library diversity

Most Difficult Targets:

- C Protein-Coupled Receptors (GPCRs)
- G Protein-Coupled Receptors (GPCR)

Difficult Targets:

- Small Peptides
- Difficult Targets: Size of Target Antigen

High Value Oncology Targets:

- Immune modulation: PD-1, PD-L1, CD47
- Antibody Drug Conjugates: VEGFR2, C-Met

Most Difficult Targets:

- G Protein-Coupled Receptors (GPCRs)
- Size of Target Antigen:

G-MAB: Library of Therapeutic Antibodies
Anti-PD-L1 mAb Exhibits Potent Activity

T Cell Activation (%)

Sorrento Competitor IFN-γ (pg/mL) Immune mAb mAb IL-2 (pg/mL) Modulation*

Tumor Growth Inhibition (%)

Tumor Mouse Model

**p<0.05, mean tumor volumes are significantly reduced in STI-A1010 group versus control groups as determined by Mann-Whitney u-test.

*** p<0.001, mean tumor volumes are significantly reduced in STI-A1010 group versus control groups as determined by Mann-Whitney u-test.

Diagram showing Tumor Mouse Model and Immune Modulation with T Cell Activation (%).
Anti-PD1 mAb Exhibits Excellent Activity

Immune Modulation* Target Specificity

<table>
<thead>
<tr>
<th>Cell IFN-γ (pg/mL)</th>
<th>(pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Cyno</td>
<td>Human Human</td>
</tr>
<tr>
<td>Sorrento mAb</td>
<td>Sorrento mAb</td>
</tr>
<tr>
<td>Control</td>
<td>Sorrento mAb</td>
</tr>
<tr>
<td>PD1</td>
<td>Control</td>
</tr>
<tr>
<td>4C</td>
<td>2D</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>2I</td>
</tr>
<tr>
<td>8I</td>
<td>C</td>
</tr>
<tr>
<td>Control</td>
<td>Sorrento mAb</td>
</tr>
<tr>
<td>PBS</td>
<td>Control</td>
</tr>
</tbody>
</table>

Target Specificity

Immune Modulation*
Proprietary K-Lock and C-Lock Conjugation Chemistries Enable Homogeneous ADCs

K-Lock

- Maleimide conjugation
- Destabilizes antibody structure
- Drug-antibody linkage not stable
- Altered PK profile
- Off-target drug effects

C-Lock

- Enhances ADC stability
- Prolongs PK profile
- Reduces off-target effects

Proprietary K-Lock chemistry

Somatozymes homogeneous ADC

Current industry standard

Genetically engineered non-natural amino acids

No need for enzymatic post-translational modification

K-Lock chemistry

Proprietary
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>251</td>
<td>960</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>130</td>
<td>164</td>
<td>176</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>320</td>
<td>139</td>
<td>368</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>425</td>
<td>48</td>
<td>1.748</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>422</td>
<td>0.21</td>
<td>1.87</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>332</td>
<td>271</td>
<td>351</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>224</td>
<td>298</td>
<td>2.15</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>255</td>
<td>151</td>
<td>2.18</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>244</td>
<td>126</td>
<td>0.18</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>68</td>
<td>78</td>
<td>1.24</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>30</td>
<td>72</td>
<td>95</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>30</td>
<td>72</td>
<td>95</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Trastuzumab was used as targeting mAb 23
In Vivo Proof of Concept of Sorrento ADCs

VEGFR2-ADC STI-D0168

c-MET-ADC STI-D0602

A431 squamous-cell carcinoma cells; indicates dosing
U87 xenograft; dosing twice weekly; maytansinoid drug conjugates
The Immunotherapy Antibody JV Company

Independent company focused on advancing next generation immunotherapies against cancer and auto-immune diseases.

Both companies will contribute to its pipeline of clinical and preclinical assets of novel and proprietary immunotherapeutics, ADCs, and bispecific antibodies.

Joint venture will draw from NantWorks’ proteomic and genomic capabilities and Sorrento’s industry-leading, highly diverse G-MAB library.
AN EXCLUSIVE JOINT PARTNERSHIP
Advancing Cellular Immunotherapy
Beyond CAR-T Cell Therapies

Neukoplast®
NK cell line
Vast diversity human antibody

GMP in a Box production
Proprietary gene insertion

Advanced proteomics platform
Proprietary technologies with
High successful screening rate

off-the-shelf library
FTO

Solid and liquid tumors
Broad anti-cancer activity in
over 70 targets screened

No clinical DLTs/SAEs in
Proprietary technologies with
over 40 patients treated

Sorrento
G-MAB

Nanotworks

Forefront in Immunotherapy
Advancing Cellular Immunotherapy
Beyond CAR-T Cell Therapies
<table>
<thead>
<tr>
<th></th>
<th>CAR TANK vs CAR T</th>
</tr>
</thead>
<tbody>
<tr>
<td>High:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requires individual patient processing</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Low:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large scale bioreactor</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MOA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Transduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Production</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR-T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR-TNK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unmodified Neukoplast Clinically Validated In Several Phase 1 Studies

More than 40 patients treated
Advanced metastatic disease refractory to chemo, biologics, cytokines, radiation and surgery

Promising activity against different cancer types, including acute myelogenous leukemia (AML), lymphoma (NHL, HL), melanoma, renal cell cancer (RCC), and lung cancers (SCLC, NSCLC)

NO DLTs; only 1 "grade 4 SAE" (hypoglycemia likely related to tumor lysis)

Many patients received multiple dosing regimens (up to 6 months)

Radiation, and surgery

Advanced metastatic disease refractory to chemo, biologics, cytokines,

More than 40 patients treated
Neukoplast do not stimulate allogeneic T cells

T cell Proliferation measured using Mixed Lymphocyte Reaction (MLR) Culture Assay

Co-cultured with Neukoplast (7 days) → no proliferation

Lympthocytes from 2 healthy donors co-cultured with each other → vigorous proliferation

Co-cultured with Neukoplast (7 days) no proliferation
CAR.TNK: CAR-modified Neukoplast

Modified Neukoplast

Clonal cell lines expressing one or more CARs to establish a range of distinct products

Multiple killing mechanisms - CAR-targeted as well as broad intrinsic anti-cancer activity of Neukoplast ("off-target / on-tumor")

Engages the adaptive immune system through cytokine secretion and immune cell recruitment

Titratable: Repeat dosing option; controllable dose exposure to manage safety risk
Serial Killing of Her2+ Cells by Her2 TNK Cells

IN VIVO PRECLINICAL MOUSE DATA

Serial killing of Her2+ target cells even after gamma radiation with 10 Gy

Selective cytotoxicity (spares normal cells)

Even after gamma radiation with 10 Gy

Selective killing of Her2+ target cells

Homing to Her2 expressing tumors

Inhibition of Her2 expression levels

Growth inhibition and killing correlate

Inhibition of Her2+ RCC metastasis

Schoenfeld et al. Mol. Therapy. In press

32
Her2:TNK In Action: Targeted and Serial Killing of Her2+ Cancer Cells

Schoenfeld et al. Mol. Therapy, in press
Her2 TNK Demonstrate Tumor Homing and Potent Anti-Glioma Activity in Mice

Intracranial LN-319 Glioblastoma xenografts in NSG mice

Schoenfeld et al. Mol Therapy in press

Tumor Homing of CAR-TNKs
Prospective CAR-TNKs for Development

(Initial List)

Target Potential Indication(s)

- EGFRviii TNK Glioma
- EphA3 TNK Glioma AML
- L1CAM TNK Gastric pancreatic NSCLC
- CSPG4 TNK H&N breast mesothelioma
- BCMA TNK Myeloma
- ROR1 TNK CLL ALL MCL breast lung pancreas
- PSMA or PSCA TNK Prostate
- PDL1 TNK Myeloma RCC NSCLC TNBC
- CS1 TNK Myeloma
- CD123 TNK AML
- CD19 TNK CLL ALL
- CD22 TNK CLL ALL

CAR targets jointly selected by the Steering Committee

Lead company will be responsible for development, regulatory filings, and all pre-clinical and clinical

Profit sharing on all CAR-TNKs proportional to contribution

EGFRviii TNK EphA3 TNK L1CAM TNK CSPG4 TNK ROR1 TNK PSMA TNK PSCA TNK PDL1 TNK CS1 TNK CD123 TNK CD19 TNK CD22 TNK are trademarks owned by Sorrento Therapeutics, Inc.
Next Steps for CAR TNK Development

H1 2015
Generation of CARs

H2 2015
Generation and evaluation of stable CAR-TNK cell lines

2016
IND-enabling studies, IND submission, and initiation of Phase 1 studies
A Comprehensive Oncology Company

Deep and Complementary Pipeline Creates Significant Opportunities

- Significant commercial edge in future drug pricing
- Significant reduction in clinical development costs and timelines
- Novel breakthrough combination therapeutic regimens and modalities to attack cancer

- RTX
- CAR
- CAR-TK
- CAR-T
- CAR-TNk
- CAR-TNK
- CAR-TNK (Chimeric Antigen Receptor Tumor-attacking Neukoplast)
- Neukoplast is a trademark owned by Conkwest Inc
- CYNVILOQ is a trademark owned by Sorrento Therapeutics Inc

CYNVILOQ, CAR-TNK, CAR-TNk, CAR-TNK (Chimeric Antigen Receptor Tumor-attacking Neukoplast) are trademarks owned by Sorrento Therapeutics Inc.
Next-Generation Cancer Therapeutics

CONTACT:

George Uy
Executive Vice President and CCO
3uy@sorrentotherapeutics.com
(661) 607-4057

Henry Ji, Ph.D.
President and CEO
hji@sorrentotherapeutics.com
(858) 668-6923