Sorrento Therapeutics, Inc.

Date of Report (Date of earliest event reported): October 14, 2014

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

☐ Written communication pursuant to Rule 425 under the Securities Act (17 CFR 230.425)
☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)
☐ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))
☐ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))
On October 14, 2014, Sorrento Therapeutics, Inc. (the “Company”) issued a press release announcing positive results from recently analyzed pharmacokinetic (PK) data from the first eight (8) patients enrolled in its ongoing TRIBECAtm (Trial establishing BE between Cynviloq™ and Albumin-bound paclitaxel) registrational trial. A copy of the press release is attached as Exhibit 99.1 and incorporated herein by reference.

The Company intends to conduct meetings with third parties in which its corporate slide presentation will be presented. The Company’s presentation is furnished as Exhibit 99.2 to this Current Report on Form 8-K and is incorporated herein by reference.

Item 9.01. Financial Statements and Exhibits.

(d) Exhibits.

The following exhibit is filed with this Current Report on Form 8-K:

<table>
<thead>
<tr>
<th>Exhibit No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.1</td>
<td>Press release of Sorrento Therapeutics, Inc., dated October 14, 2014</td>
</tr>
<tr>
<td>99.2</td>
<td>Corporate Presentation of Sorrento Therapeutics, Inc.</td>
</tr>
</tbody>
</table>
Pursuant to the requirements of the Securities Exchange Act of 1934, the Registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Dated: October 14, 2014

SORRENTO THERAPEUTICS, INC.

By: /s/ Richard Vincent

Name: Richard Vincent

Title: Executive Vice President, Chief Financial Officer and Secretary
INITIAL PHARMACOKINETIC DATA FROM TRIBECA STUDY SUPPORT POTENTIAL FOR BIOEQUIVALENCE BETWEEN CYNVILQ AND ALBUMIN-BOUND PACLITAXEL

San Diego, CA – October 14, 2014 – Sorrento Therapeutics, Inc. (NASDAQ: SRNE; Sorrento), an oncology company developing new treatments for cancer and associated pain, announced today positive results from recently analyzed pharmacokinetic (PK) data from the first eight (8) patients enrolled in its ongoing TRIBECA™ (TRIal establishing BE between Cynviloq™ and Albumin-bound paclitaxel) registrational trial. The data from these patients supports earlier completion of the study with the aim of seeking to establish bioequivalence (BE) to albumin-bound paclitaxel to obtain Food and Drug Administration (FDA) marketing approval for Cynviloq (paclitaxel polymeric micelle for injection).

Sorrento amended the current BE cross-over design protocol of the TRIBECA study to un-blind the first 8 patients to reassess the sample size of 100 patients estimated from simulation of historical PK data. Based on the cross-over data and the analyses of relevant paclitaxel plasma PK data performed by two independent PK consulting groups, the success of the BE approach for seeking approval of Cynviloq remains subject to FDA review and discussion. Sorrento does not plan to un-blind additional patient data. Current sample size point estimates suggest that the enrollment target for the current study can be reduced to nearly half of the original target.

“We are pleased that the favorable PK data from actual patients treated have thus far exceeded our expectations”, said Henry Ji, Ph.D., President and Chief Executive Officer of Sorrento. “Guided by these promising data, Sorrento plans to reduce the TRIBECA patient sample size to accelerate filing for FDA approval.”

About Sorrento Therapeutics, Inc.

Sorrento is an oncology company developing new treatments for cancer and associated pain. Sorrento’s most advanced asset Cynviloq™, the next-generation paclitaxel, commenced its registrational trial in March 2014 and is being developed under the abbreviated 505(b)(2) regulatory pathway. Sorrento is also developing RTX, a non-opiate TRPV1 agonist currently in a Phase 1/2 study at the NIH to treat terminal cancer patients suffering from intractable pain. The Company has made significant advances in developing human monoclonal antibodies, complemented by a comprehensive and fully integrated antibody drug conjugate (ADC) platform that includes proprietary conjugation chemistries, linkers, and toxic payloads. Sorrento’s strategy is to enable a multi-pronged approach to combating cancer with small molecules, mono- and bi-specific therapeutic antibodies, and ADCs.

Forward-Looking Statements

This press release contains forward-looking statements under the safe harbor provisions of Section 21E of the Private Securities Litigation Reform Act of 1995 and subject to risks and uncertainties that could cause actual results to differ materially from those projected. Forward-looking statements on Cynviloq include: (i) results from recently analyzed PK data from the first eight (8) patients enrolled in the ongoing TRIBECA™ registrational trial suggest that Cynviloq is likely to be representative of the full
patient data in the TRIBECA study; (ii) the reduction of the enrollment target for the current study will support the bioequivalence strategy for Cynviloq; (iii) whether the FDA will view the data and results of the TRIBECA study as sufficient to support approval based on bioequivalence and (iv) the expectation that the NDA submission can be accelerated successfully based on a smaller enrollment total, if at all; (v) the risks of this strategy as well as the advances made in developing human monoclonal antibodies, if any; and (vi) other matters described in Sorrento’s Annual Report on Form 10-K for the year ended December 31, 2013, and subsequent Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commission, including the risk factors set forth in those filings. Investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this release and we undertake no obligation to update any forward-looking statement in this press release except as required by law.

Contact:
Mr. George Uy
EVP & Chief Commercial Officer
Sorrento Therapeutics, Inc.
guy@sorrentotherapeutics.com
T: + 1 (661) 607-4057
This presentation contains "forward-looking statements" as that term is defined under the Private Securities Litigation Reform Act of 1995 (PSLRA), including statements regarding our business, strategies and products, including timelines, sufficiency of data from those trials and the requirements of the FDA for potential approval of Cyntilex™. These statements are made based upon current expectations that are subject to risk and uncertainty and information available to the Company as of the date of this presentation. These statements are subject to the safe-harbor provisions of the PSLRA. Actual results may differ from those expressed or implied in these statements due to a number of risks and uncertainties, including, but not limited to, the possibility that some or all of the pending matters and transactions being considered by the Company may not proceed as contemplated. The Company does not undertake to update forward-looking statements in this presentation to reflect actual results, changes in assumptions or changes in other factors affecting such forward-looking information. Assumptions and other information that could cause results to differ from those set forth in the forward-looking information contained in this presentation can be found in the Company's filings with the Securities and Exchange Commission.
Management Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henry Ji, PhD</td>
<td>President, CEO & Director, Invento of G-MAB Technology</td>
</tr>
<tr>
<td>George Uy</td>
<td>EVP & CCO, Directed the launches of Abraxane, Xeloda & Fusilex, Responsible for building Spectrum Pharma commercialization of strategic pipeline products.</td>
</tr>
<tr>
<td>David Miao, PhD</td>
<td>CTO, President & CEO of CombiMatrix and Strategene Genetics, Inventor of G-MAB Technology</td>
</tr>
<tr>
<td>Mike Royal, MD</td>
<td>EVP, Clinical & Regulatory Affairs, Head of Chemistry at Ambix, Co-inventor of IP covering ADC technologies</td>
</tr>
<tr>
<td>Mark Durand</td>
<td>EVP, Corporate Development, Watson, Teva - Americas (formar SVP, Corporate Development)</td>
</tr>
<tr>
<td>Douglas Ebersole</td>
<td>EVP, Corporate Development,Radius Health (formar CFO)</td>
</tr>
<tr>
<td>Kim D. Janda, PhD</td>
<td>EVP & CCO, Teva - Americas (former President & CEO),Radius Health (formar President & CEO)</td>
</tr>
<tr>
<td>William M. March</td>
<td>Chairmen, Jaisim Shah</td>
</tr>
</tbody>
</table>

Board of Directors

- William S. Marth - Chairman
- Alban Molecular (President & CEO)
- Teva - Americas (formar President & CEO)
- Albert Marjan (President, CEO)
- PDL (formar President & CEO)

- Kim D. Janda, PhD
- Mark Durand
- Douglas Ebersole
- William M. March - Chairmen
RTX Positive Phase 1/2 data
New cohorts being enrolled
Pivotal Phase 2: 2015
TUMOR
AfDC MYC Inhibitor
C
y
nviloq
>1,200
p
ts treated in clinical trials
Initial PK data suggest BE to albumin-bound paclitaxel
TRIBECA Completion: Q1 2015
NDA Submission: Q3 2015
Next-Generation Cancer Therapeutics
G-MAB
on
gate rug
ntibody
ADC: Antibody Drug Conjugate
ADC
MVC Inhibitor
Cynviloq
>1,200 pts treated in clinical trials
G-MAB
TUMOR
CYNVILOQ™

- MYC Inhibitor
- ADC
- Bi-Specific AB
- G-MAB &

Target: RTX

Indication:
- Intractable Cancer Pain
- Metastatic Breast Cancer
- Non-Small Cell Lung Cancer
- Metastatic Breast Cancer

Phase:
- Phase 3
- Phase 2
- Phase 1
- Preclinical

Multiple Commercialization & Partnership Opportunities
Recent Corporate Events

- Positive PK data from first 8 unblinded patients suggest BE between Cyvniloq and albumin-bound paclitaxel.
- Positive data from RTX Phase I/II cancer pain trial.
- Licensing agreement to develop and commercialize anti-PD-L1 mAb with Lee's Pharmaceutical for greater Chinese market.
- Exclusive research and option agreement to generate and develop antibody-drug conjugates (ADCs) with MorphoKine / Eisai.
- National Institute of Health (NIH) grants to fund development of:
 - Small molecule MYC inhibitor
 - Immunotherapy targeting IL-6 signaling
 - Pulmonary fibrosis
 - Antibody formulated drug conjugates (AfDCs) against P. aeruginosa infections
 - Anti-MRSA bacterial-diagnostic antibiotics
 - Exclusive research and option agreement to generate and develop antibody-drug conjugates (ADCs) with Morphotek / Eisai.
- Positive data from RTX Phase I/II cancer pain trial.
- Positive data from RTX first 8 unblinded patients suggest BE between Cyvniloq and albumin.
Cynviloq (Paclitaxel polymeric micelle)

Registration Trial

Lead Oncology Product Opportunity
Cynviloq: Next Generation Paclitaxel Therapy

Conversion of paclitaxel sales + new indications

Peak Product Sales

1st Generation

Taxol®

1.75 mg/m²

2nd Generation

Albumin-bound paclitaxel

260 mg/m²

3rd Generation

Polymeric micelle paclitaxel

>300 mg/m²

Mean size ~25 nm

Biological polymer: Donor-derived human serum albumin (HSA)

Chemical polymer: Poly(β-lactide and polyethylene glycol)

Maximum Tolerated Dose

$1.5-2.0B (WW in 2017)

Prescription of 1.5-2.0B (WW in 2017)

$1.6B (WW in 2000)

MBC, NSCLC, PC

Celgene Presentation at UBS Global Healthcare Conference, May 19, 2014, p.9
Clinical Summary

Phase 1:
Trials established MTD at >300 mg/m² - Dana Farber Cancer Inst, Russia, & S. Korea (total n=80)

>300 mg/m² (q3w) vs. 175 mg/m² (Taxol; weekly)

Phase 2:
Completed trials in MBC, NSCLC, PC, OC, BC; in US - Yale Cancer Center, Russia, S. Korea (total n=259)
Possible Phase 3 sNDA programs in these tumor types

Phase 2b:
Chemo-naïve Stage IIIB/IV NSCLC vs. Taxol in S. Korea (total n=276; Cynviloq n=140)
230 mg/m² + cis (q3w) vs. Taxol 175 mg/m² + cis; non-inferiority established

Phase 2:
1st line treatment of OC vs. Taxol in S. Korea (total n=100; Cynviloq n=50)
260 mg/m² + carbo (q3w) vs. Taxol 175 mg/m² + carbo; non-inferiority established

Phase 3:
GPMBC301. An Open-label, Randomized, Parallel, Phase 3 Trial to Evaluate the Efficacy and Safety of Cynviloq Compared to Genexol® (Paclitaxel with Cremophor EL) in Subjects with Recurrent or Metastatic Breast Cancer

MBC in S. Korea (total n=209; Cynviloq n=105 vs. Taxol n=104)
260 mg/m² + carbo (q3w) vs. Taxol 175 mg/m² + carbo: non-inferiority established

PM-Safety:
Completed for MBC and NSCLC (total n=502)

Efficacy and safety data supportive of 505(b)(2) submission

Total number of patients across all trials: 1,260

Data on file

* Investigator Initiated Study
Phase 3 MBC Clinical Results

- Trieu et al. 2013. IG-001 for Metastatic Breast Cancer - Interim Analysis of a Phase 3 Trial. 4th Nanomedicine Conference, Sydney, Australia.
Bioequivalence = Potential Pathway to Market

TRIBECA™

TRI-Establishing Bioequivalence between Cynviloq® and Albumin-bound Paclitaxel

Note: Previous trial size estimate of 100 patients was based on PK simulation of albumin-bound paclitaxel and Cynviloq historical data with both drugs given at different doses and infusion rates. Based on the recent positive initial PK data, 53 patients may be, subject to FDA guidance, sufficient to establish BE.

Key Parameters:
- Cmax (90% CI)
- Endpoints: AUC and AUCinf
- Duration: 3 weeks + crossover for 3 weeks
- Infusion time: 30 min
- Dose: 260 mg/m²

Cycle 1
- Patients with MBC

Cycle 2
- Albunin-bound Paclitaxel
 - (n = 27)
- Albunin-bound Paclitaxel
 - (n = 27)
Initial PK Data Analysis

BE Assessment and Sample Size Estimate

<table>
<thead>
<tr>
<th>Ratio of Cytiviloq/Albumin-bound Paclitaxel (%)</th>
<th>Ln(AUC<sub>0-10</sub>)<sup>109.19</sup></th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>152.5</td>
<td>Ln(Cmax)</td>
<td>102.5</td>
</tr>
<tr>
<td>126.5</td>
<td>Ln(Alb)</td>
<td>109.1</td>
</tr>
<tr>
<td>93.98 - 126.5</td>
<td>Ln(AUC<sub>0-10</sub>)<sup>103.98</sup></td>
<td></td>
</tr>
</tbody>
</table>

Parameter estimates: $N = 53$ with 90% power.
Differences in Formulations of Paclitaxel

<table>
<thead>
<tr>
<th>Comparison</th>
<th>CyNviloq</th>
<th>Taxol®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
<td>Albumin-bound Paclitaxel</td>
<td>Solvent-based (Cremophor EL)</td>
</tr>
<tr>
<td>Mechanism of Action</td>
<td>Rapid nanoparticle dissociation to encapsulated paclitaxel and polyethylene glycol-diol (PEG)</td>
<td>Slow release of paclitaxel due to Cremophor entrapment</td>
</tr>
<tr>
<td>Maximum Tolerated Dose</td>
<td>>300 (mg/m²)</td>
<td>260.4</td>
</tr>
<tr>
<td>Human serum albumin</td>
<td>HSA-free</td>
<td>HSA-free</td>
</tr>
<tr>
<td>Virtual/Prevention of transmission</td>
<td>Stable at ambient temperature (~25°C) for up to 27 hours</td>
<td>Needs refrigeration (2°C - 8°C) for up to 8 hours</td>
</tr>
<tr>
<td>Viability of reconstituted vial</td>
<td>Stable at ambient temperature, use within 24 hours</td>
<td>Needs refrigeration (2°C - 8°C) for up to 8 hours</td>
</tr>
<tr>
<td>Solution may show haziness</td>
<td>Stable at ambient temperature (~25°C) for up to 27 hours</td>
<td>Stable at ambient temperature (~25°C) for up to 27 hours</td>
</tr>
<tr>
<td>Reconstitution</td>
<td>Solution may show haziness</td>
<td>Solution may show haziness</td>
</tr>
<tr>
<td>No foaming or clumping</td>
<td>Solution may show haziness</td>
<td>Solution may show haziness</td>
</tr>
<tr>
<td>Recombinant nanotechnology</td>
<td>Solution may show haziness</td>
<td>Solution may show haziness</td>
</tr>
<tr>
<td>Taxol Package insert, Registered trademark of BMS.</td>
<td>CyNviloq is marketed as Genexol-PM in S Korea.</td>
<td>CyNviloq is marketed as Genexol-PM in S Korea.</td>
</tr>
</tbody>
</table>

References:
4. Abraxane (paclitaxel protein-bound particles for injectable suspension (albumin-bound)). Taxol® Package insert, Registered trademark of BMS. 4
5. Cremophor® EL. Product insert. 4
6. Taxol Package insert, Registered trademark of BMS.
Estimated Timelines and Next Steps

- First patient dosed: March 31, 2014
- Last patient out: January 2015
- NDA filing: Q3 2015
- Product launch (MBC and NSCLC): 2016
- sNDA planning for label expansion into pancreatic, bladder, and ovarian cancers

NDA Filing
2015

FDA Approval
2016

Study
BE
2014

LAUNCH
2016

FDA

"Estimates, subject to discussions with the FDA."
Resiniferatoxin (RTX): A Novel, Non-opiate Analgesic for Intractable Cancer Pain
Intrathecal:
(injection into the cerebrospinal fluid space)

Intraganglionic:
(injection into the dorsal root ganglion [DRG])

Two Injection Sites = Two Products for Human Use
RTX ablates TRPV1-positive neurons after intrathecal injection.
19 Open-Label Study in Companion Dogs

Brown et al, Anesthesiology 2005

Weeks

n=18
n=18
n=8
n=4

(p < 0.0001 for all time points)

100% response rate with single intrathecal injection

12 dogs reduced or discontinued analgesics

Permanently analgesic effect

Gait and mood visibly improved

Personal integrity intact

No opioid-like side effects

Separate labeling opportunity

Animal health market represents

Intractable pain due to osteosarcoma

Permanent analgesic effect

Osteosarcoma, not RTX treatment

Dogs passed away due to underlying osteosarcoma

No opioid-like side effects

Market represents separate labeling opportunity

100% response rate with single intrathecal injection

Open-Label Study in Companion Dogs
Intracranial injection is a potential new delivery modality for RTX. Adapted from Tender et al, 2005.

Nociceptive neuron-mediated neurogenic inflammation (Evans blue).

Unilateral injection of RTX into only a single trigeminal neuron, not only resulted in a local functional difference, but also resulted in a local reduction of neurogenic inflammation.

RTX control

Right eye (red) vs Left eye (blue) vs

Number of blinks

20 40 60 80 100 120 140 160

1 2 3 4 5 6 7 8

160 140 120 100 80 60 40 20

1

delivery modality for RTX
Intracranial injection is a potential new
Interim Data from the Phase 1/2 NIH sponsored trial

• 6 advanced cancer pts with severe refractory pain dosed with no unexpected toxicity
• All 6 pts had near complete relief post-injection
• MTD not reached, additional dose escalation being explored

Clinically meaningful improved pain scores with increased activity

6 advanced cancer pts

Baseline average: NRS = 8.27

Average 1.6 point improvement across BPI

Average (24.7% improvement = 2.05) NRS reduction = 0.6

Death due to cancer

Baseline average NRS = 8.27

Improvement in QOL with near complete relief of pain post-RTX; meaningful improvement in QOL

Demographics at Study Entry

<table>
<thead>
<tr>
<th>Patient</th>
<th>Pretreatment RTX Injection Date</th>
<th>Pretreatment Last NRS Pain Intensity Score</th>
<th>Pretreatment Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/8/13</td>
<td>7.3</td>
<td>Died W6 of cancer</td>
</tr>
<tr>
<td>2</td>
<td>8/3/12</td>
<td>8.0</td>
<td>Died just past M3</td>
</tr>
<tr>
<td>3</td>
<td>10/23/12</td>
<td>8.4</td>
<td>Died just past D30</td>
</tr>
<tr>
<td>4</td>
<td>9/1/11</td>
<td>6.7</td>
<td>Died just past M1</td>
</tr>
<tr>
<td>5</td>
<td>6/7/11</td>
<td>6.0</td>
<td>Died just past M3</td>
</tr>
<tr>
<td>6</td>
<td>9/23/13</td>
<td>4.0</td>
<td>Died just past M3</td>
</tr>
</tbody>
</table>

Target Pain Area

- Bone metastases
- Low back and left hip/groin pain 2
- Left hip/groin pain 2 bone metastases
- Bilateral abdominal (visceral) pain
- Bilateral iliopsoas (neuropathic) pain
- Bilateral iliopsoas (malignant) pain
- Bilateral iliopsoas (lymphoma, small cell, monochordal)
- Bilateral iliopsoas (lymphoma, small cell, monochordal)
- Metastatic endometrial cancer
- Metastatic small cell lung cancer
- Metastatic breast cancer

Data presented May 1, 2014 at 33rd Annual Scientific Meeting of the American Pain Society; Tampa, FL
Next Steps for RTX Development

Under NIH CRADA

Under Sorrento IND

Filing for MUMS designation for osteosarcoma in dogs

Intractable cancer pain clinical Phase 1/2 trial (intrathecal injection): n~40 patients

Phase 1/2 trial for osteosarcoma (intrangiohistoic injection): n~15 patients

Phase 1/2 trial for osteosarcoma (intrathecal injection): n~13 patients

~3 years for clinical development
Mono- and Bi-specific Antibodies + Proprietary Toxins

& ADC

G-MAB

Immunotherapy Programs
G-MAB: Library of Therapeutic Antibodies

Size of Target Antigen

Bi-specific molecules

High Value Oncology Targets:
- Immune modulation: PD-1, PD-L1, CD47
- Antibody Drug Conjugates: VEGFR2, c-Met

Most Difficult Targets:
- RNA amplification used for library generation
- G Protein-Coupled Receptors (GPCRs)
- Small Peptides

Difficult Targets:
- G Protein-Coupled Receptors (GPCRs)

High successful screening hit rate
- Fully human antibodies
- 2.1 x 10^16 distinct antibodies
- Very high library diversity

No stack-ins royalties
- Freedom-to-Operate
- Library generation
- RNA amplification used for proprietary technology

G-MAB: Library of Therapeutic Antibodies
Competitor mAb
Sorrento mAb

Anti-PD-L1 mAb Exhibits Potent Activity

Immune Modulation

Tumor Mouse Model

TCell Activation (%)
Anti-PD1 mAb Exhibits Excellent Activity
Drug Released in CANCER CELL

Key Components:
1. Target-specific internalizing antibody
2. Potent cytotoxic prodrugs
3. Linker and conjugation chemistries

Antibody Drug Conjugates (ADCs)
<table>
<thead>
<tr>
<th>EC50 (pM)</th>
<th>Duostatin 3</th>
<th>MME</th>
<th>DMI</th>
<th>Her-2</th>
<th>Cancer</th>
<th>proprietary High Potency Duostatin Toxins</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>150</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td>SKOV-3</td>
</tr>
<tr>
<td>130</td>
<td>164</td>
<td>+++</td>
<td>176</td>
<td></td>
<td></td>
<td>OE-1-9</td>
</tr>
<tr>
<td>260</td>
<td>368</td>
<td>+++</td>
<td>1,348</td>
<td><100,000</td>
<td></td>
<td>N87</td>
</tr>
<tr>
<td>425</td>
<td>>1,000,000</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>MDA-MB-175</td>
</tr>
<tr>
<td>452</td>
<td>1,877</td>
<td>++</td>
<td>1,358</td>
<td>>100,000</td>
<td></td>
<td>MDA-MB-453</td>
</tr>
<tr>
<td>332</td>
<td>391</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td>MDA-MB-361</td>
</tr>
<tr>
<td>264</td>
<td>298</td>
<td>+++</td>
<td>215</td>
<td></td>
<td></td>
<td>ZR75</td>
</tr>
<tr>
<td>35</td>
<td>151</td>
<td>+++</td>
<td>218</td>
<td></td>
<td></td>
<td>MDA-MB-175</td>
</tr>
<tr>
<td>214</td>
<td>126</td>
<td>+++</td>
<td>188</td>
<td></td>
<td></td>
<td>BT474</td>
</tr>
<tr>
<td>68</td>
<td>78</td>
<td>+++</td>
<td>124</td>
<td></td>
<td></td>
<td>HCC1954</td>
</tr>
<tr>
<td>30</td>
<td>72</td>
<td>+++</td>
<td>95</td>
<td></td>
<td></td>
<td>SBKR3</td>
</tr>
</tbody>
</table>

Trastuzumab was used as targeting mAb.
Proprietary K-Lock chemistry enables non-natural amino acids for genetic re-engineering. No need for conventional posttranslational modification.

Sorrento’s homogeneous ADC

K-Lock Conjugation Enables Homogeneous ADCs

Current industry standard
Maleimide conjugation

- Destabilizes antibody structure
- Drug-antibody linkage not stable
- Off-target effects
- Altered PK profile

C-Lock conjugation

- Stabilizes ADCs
- Enhances ADC stability
- Prolongs PK profile
- Reduces off-target effects

Drug

Antibody

ADCs

Drug conjugation

C-Lock Conjugation Stabilizes ADCs

Maleimide conjugation

- Destabilizes antibody structure
- Drug-antibody linkage not stable
- Off-target effects
- Altered PK profile

C-Lock conjugation

- Stabilizes ADCs
- Enhances ADC stability
- Prolongs PK profile
- Reduces off-target effects
Proprietary ADC Screening Using Panels

Fast path to IND

Identification of optimal combination of linker, conjugation chemistry and drug payload essential for efficient and expedited development from hit to drug candidate.
Efficacy of anti-VEGFR2-ADC STI-D0168

* indicates dosing

PBS

anti-VEGFR2 mAb (5 mg/kg)
control ADC (5 mg/kg)
STI-D0168 (1 mg/kg)
STI-D0168 (5 mg/kg)

Tumor Volume (mm³)
Efficacy of anti-c-MET-ADC STI-D0602
Intractable Cancer Pain Treatment

- Ongoing Phase 1/2 study
- Orphan drug status received
- Three potential drug products from same API
- First therapeutic antibody candidate in clinic 1H 2016
- First ADC in clinic 1H 2016
- Proprietary linker/conjugation chemistry for homogeneous ADC generation

Targeted Cancer Immunotherapeutics

- First ADC in clinic 1H 2016
- G-MAB
- RTX
- Cynviloq

Late-Stage Cancer Drug

- NDA submission in Q3 2015
- Product launch expected in 2016
- Addresses multi-billion dollar paclitaxel market
- Bi-specific antibodies in development

Abbreviated regulatory pathway ("bioequivalence") for approval

Investment Highlights
Developing Therapeutic Solutions to Help Man’s Life Companions

Animal Health

A Subsidiary of Sorrento
Next-Generation Cancer Therapeutics

Contact:
Henry Ji, Ph.D.
President and CEO
hji@sorrentotheapeutics.com
(858) 668-6923