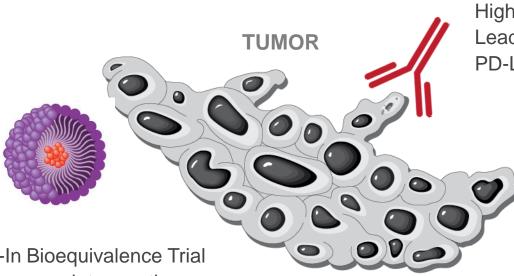
Sorrento

Next-Generation
Cancer Therapeutics

May 2014

Safe Harbor Statement


NASDAQ: SRNE

This presentation contains "forward-looking statements" as that term is defined under the Private Securities Litigation Reform Act of 1995 (PSLRA), including statements regarding expectations, beliefs or intentions regarding our business, technologies and products strategies or prospects. Actual results may differ from those projected due to a number of risks and uncertainties, including, but not limited to, the possibility that some or all of the pending matters and transactions being considered by the Company may not proceed as contemplated, and by all other matters specified in Company's filings with the Securities and Exchange Commission, as well as risks inherent in funding, developing and obtaining regulatory approvals of new, commercially-viable and competitive products and product candidates. Sufficiency of the data for approval with respect to Cynvilog[™] will be a review issue after NDA filing. These statements are made based upon current expectations that are subject to risk and uncertainty and information available to the Company as of the date of this presentation. The Company does not undertake to update forward-looking statements in this presentation to reflect actual results, changes in assumptions or changes in other factors affecting such forward-looking information. Assumptions and other information that could cause results to differ from those set forth in the forward-looking information can be found in the Company's filings with the Securities and Exchange Commission, including its most recent periodic report. We intend that all forward-looking statements be subject to the safe-harbor provisions of the PSLRA.

Management Team

Henry Ji, Ph.D. President, CEO & Director	Inventor of G-MAB® Technology President & CEO of Stratagene Genomics VP of CombiMatrix and Stratagene	Board of Directors
Vuong Trieu, Ph.D. CSO & Director	Founder and CEO of IgDraSol Co-inventor of IP covering Abraxane® Instrumental in the approval of Abraxane Celgene acquired Abraxis Biosciences for > \$3B	William S. Marth - Chairman Albany Molecular (President & CEO) Teva – Americas (former President & CEO)
Amar Singh	Closed major business transactions on oncology products Led Novacea global transaction (Asentar®) with Schering- Plough valued at >\$500M	Mark Durand Watson, Teva – Americas (former CFO)
EVP & CBO	Led major deals at Spectrum Pharmaceuticals Responsible for building Abraxis commercial organization Led oncology franchise at Hoffmann-La Roche	Cam Gallagher Nerveda, LLC (Managing Director)
George Uy CCO	Directed the launches of Abraxane, Xeloda® & Fusilev® Built commercial infrastructures and organizations in startup companies	Kim D. Janda, Ph.D. The Scripps Research Institute (Prof.)
David Miao, Ph.D. CTO	President and CSO of Concortis BioSystems Co-inventor of IP covering ADC technologies Head of Chemistry at Ambrx	Henry Ji, Ph.D. Sorrento (CEO)
Richard Vincent EVP & CFO	\$430M sale of Elevation to Sunovion-Dainippon Meritage Pharma option agreement with ViroPharma (\$90M upfront + milestones)	Jaisim Shah PDL (former CBO)
	\$310M sale of Verus asthma program to AstraZeneca Elan: various acquisitions and divestitures with aggregate values more than \$300M	Vuong Trieu, Ph.D. Sorrento (CSO)

Next-Generation Cancer Therapeutics

G-MAB

High-diversity human Ab library Lead mAb programs include PD-L1, PD-1, and CCR2

Cynviloq

First-Patient-In Bioequivalence Trial Bioequivalence regulatory pathway Efficacy demonstrated North America, EU and Australia rights

ADC: Antibody Drug Conjugate

G-MAB targets toxin to cancer cell Proprietary toxins and linkers C-Lock and K-Lock conjugation chemistries

Multiple Commercialization & Partnership Opportunities

	INDICATION PRECLINICAL PHASE 1 PHASE 2 PHASE 3					
	Metastatic Breast Cancer Non-Small Cell Lung Cancer 505(b)(2) Bioequivalence					
Cynviloq	Pancreatic Cancer (BE* or sNDA)					
	Bladder Cancer (sNDA)					
	Ovarian Cancer (sNDA)					
RTX	Intractable Cancer Pain					
	INDICATION > TARGET					
	Oncology > PD-L1					
G-MAB	Oncology > PD-1					
	Oncology/Inflammation > CCR2, CXCR3					
ADC	Oncology > VEGFR2, c-Met, CXCR5					

^{*} Abraxane orphan drug status (FDA approval, September 2013)

Lead Oncology Product Opportunity

Cynviloq: Next Generation Paclitaxel Therapy

Maximum Peak Generation **Tolerated Dose Formulation Product Sales Cremophor EL Taxol**® **1** st 175 mg/m² ~ \$1.6B (WW in 2000) excipient: paclitaxel Polyoxyethylated castor oil **Biological** polymer: 260 mg/m² Est. >\$1.7B* (US) Abraxane Donor-derived human 2nd Mean size (\$430M in 2012) serum albumin (HSA) nab-paclitaxel 130 nm Conversion of **Chemical** polymer: 3rd Cynviloq $>300 \text{ mg/m}^2$ Poly-lactide and Abraxane sales + Mean size paclitaxel (up to 435 mg/m²) polyethylene glycol ~25 nm new indications polymeric micelle diblock copolymer

Clinical Efficacy & Safety Summary

Total number of patients across all trials: 1,260

Phase 1:

Trials established higher MTD in US - Dana Farber Cancer Inst, Russia, & S. Korea (total n=80)

>300 mg/m² (q3w) vs. 175 mg/m² (Taxol; weekly) and 275 mg/m² (Abraxane; q3w)

Phase 2:

Completed trials in MBC, NSCLC, PC, OC, BC; in US - Yale Cancer Center, Russia, S. Korea

(total n=259)

Data suggestive of efficacy comparable to historic data for Abraxane and superior to historic Taxol data or Standard-of-Care

Possible Phase 3 sNDA programs in these tumor types

Ongoing trial for MBC in S. Korea (total n=209; Cynviloq n=105)

Phase 3:

GPMBC301. An Open-label, Randomized, Parallel, Phase 3 Trial to Evaluate the Efficacy and Safety of Cynviloq compared to Genexol® (Paclitaxel with Cremophor EL) in Subjects with Recurrent or Metastatic Breast Cancer)

Interim analysis suggests ORR superior to Taxol and comparable to historic Abraxane efficacy

Efficacy and safety data supportive of 505(b)(2) BE submission

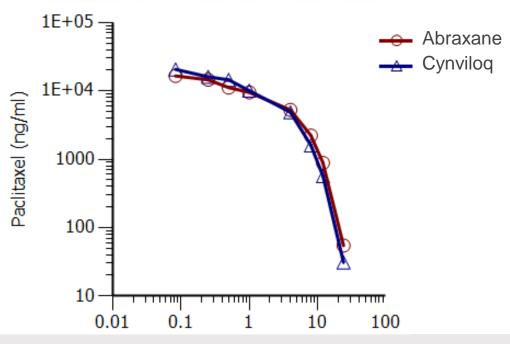
PM-Safety:

Completed for MBC and NSCLC (total n=502)

Efficacy and safety data supportive of 505(b)(2) BE submission

Phase 2b (IIS):

Chemo-naïve Stage IIIb/IV NSCLC vs Taxol in S. Korea (total n=276; Cynviloq n=140)


230 mg/m² + cis (q3w) vs. Taxol 175 mg/m² + cis; non-inferiority established

Phase 2 (IIS):

1st line treatment of OC vs Taxol in S. Korea (total n=100; Cynvilog n=50)

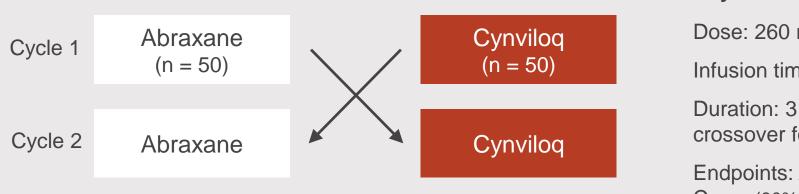
260 mg/m² + carbo (q3w) vs. Taxol 175 mg/m² + carbo; non-inferiority established

Equivalent PK in Mice

Drug	HL (h)	T max (h)	AUCinf (h*ng/mL)	Vz (mL/kg)	Cl (mL/h/kg)
Abraxane	2.99	0.08	61561.33	2103.71	487.32
Cynviloq	2.83	0.08	58151.31	2103.58	515.90

Comparable PK in Humans

Data from 2 separate studies (3 h infusion, 135 mg/m² dose, n=3)


	Cmax (ng/ml)	AUCinf (ng/ml*h)	Half-Life (hr)	CI (L / hr / m²)
Abraxane®	1392	5654	12.9	27.4
Cynviloq™	1357	5473	12.7	25.5

Bioequivalence = Efficient Pathway to Market

TRIBECA™ (TRIal designed to evaluate BioEquivalence between Cynviloq[™] and Abraxane[®]) (2014)

- Patients with MBC
- Duration = 12 months (including patient recruitment)

Key Parameters:

Dose: 260 mg/m²

Infusion time: 30 min

Duration: 3 weeks + crossover for 3 weeks

Endpoints: AUC and

Cmax (90% CI)

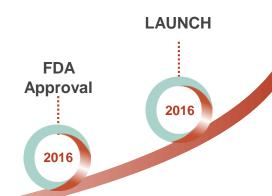
First patient dosed March 31, 2014

Potential Cynviloq Advantages

	Cynviloq	Abraxane	Taxol	Cynviloq Advantage
Maximum Tolerated Dose (mg/m²)	>300	260	175	Potential for higher efficacy
Rapid reconstitution: no foaming concerns	•		•	Convenience for busy practices and pharmacies
No donor-derived human serum albumin (HSA)	•		•	No viral / prion concerns
Convenient storage conditions	•		•	No requirement for controlled temp storage
No microbial growth	•		•	Chemical polymer
Cremophor-free	•	•		Reduced side effects
Dosing	q3w	q3w* & weekly**	q3w & weekly	Exploits PK advantage @ higher dose

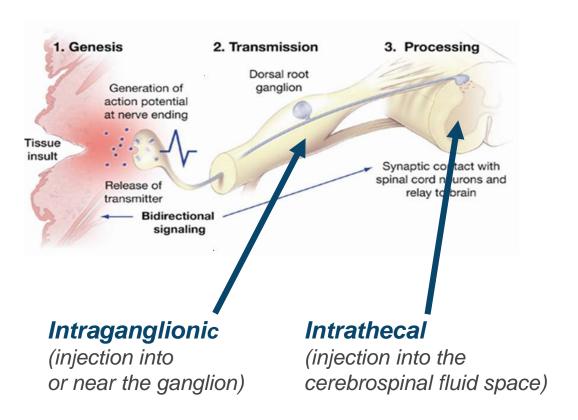
Next Steps for Cynviloq

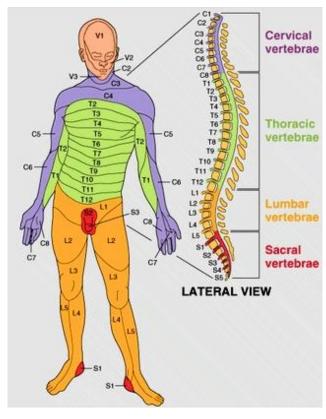
First patient dosed: March 31, 2014

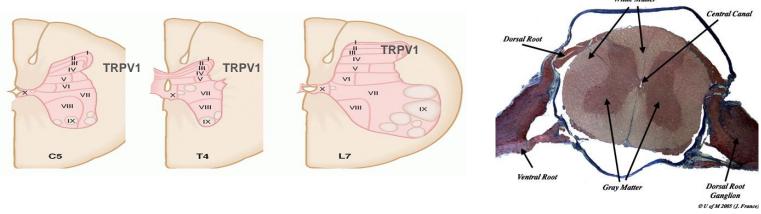

NDA filing: 2015

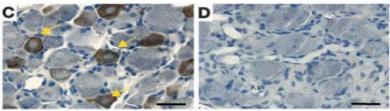
Product launch (MBC and NSCLC): 2016

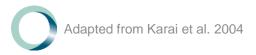
sNDA planning for label expansion into pancreatic, bladder, and ovarian cancers

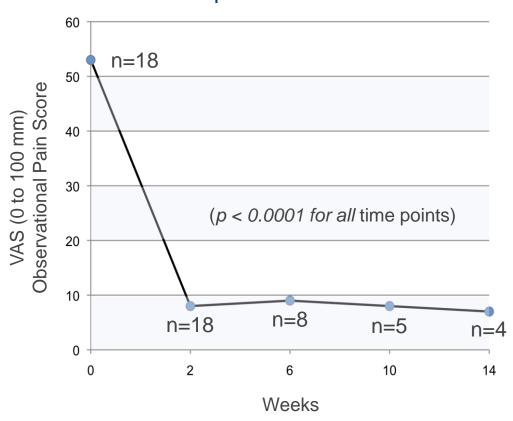



Clinical Stage Pain Management Asset


Two Injection Sites = Two Products for Human Use




RTX Ablates TRPV1-positive Neurons after Intrathecal Injection


Fore limb
TRPV1 positive

Hind limbTRPV1 negative

Open-Label Study in Companion Dogs

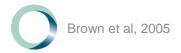
Intractable pain due to osteosarcoma

100% response rate with single intrathecal injection

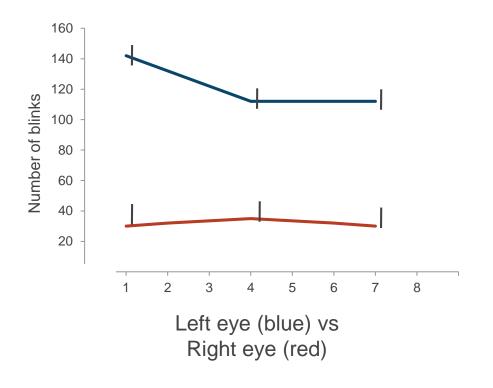
12 dogs reduced or discontinued analgesics

Dogs passed away due to underlying osteosarcoma, not RTX treatment

Permanent analgesic effect


Personality intact

Gait and mood visibly improved


Lack of serious adverse events

No opioid-like side effects

Animal health market represents separate licensing opportunity

Unilateral Effect Following Trigeminal Injection

Nociceptive neuron-mediated neurogenic inflammation (Evans blue)

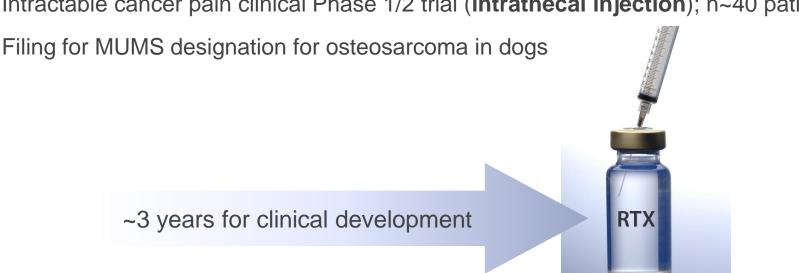
Interim Data from the Phase 1/2 NIH sponsored trial

- 6 advanced cancer pts with severe refractory pain dosed with no unexpected toxicity
- MTD not reached, additional dose escalation being explored
- Clinically meaningful improvement in QOL
- Improved pain scores with increased activity

Data presented May 1, 2014 at 33rd Annual Scientific Meeting of the American Pain Society; Tampa, FL

Demographics at Study Entry	Cancer Diagnosis	Target Pain Area	
49 y (f)	Metastatic breast cancer	Low back and bilateral leg pain 2º bone mets	
56 y (m)	Metastatic supraglottic squamous cell cancer	Low back and bilateral hip pain 2º bone mets	
57 y (m)	Metastatic pancreatic cancer	Bilateral abdominal (visceral) pain	
68 y (m)	Lymphoma, small fiber monoclonal gammopathy	Bilateral hip and buttocks (neuropathic) pain	
55 y (m)	Metastatic small cell lung cancer	Left hip pain 2º bone mets	
61 y (f)	Metastatic endometrial cancer	Low back and left hip/groin pain 2º bone mets	

Patient	Pre	Injection	Last NRS	%NRS PI	Details
Patient	RTX	Date	PI score	improvement	Details
4	7.2	5/9/11	6.4.(6.ma)	15.5	Bedridden to walking; nearly Y3 post RTX;
1	7.3	3/9/11	6.1 (6 mo)	15.5	cancer has progressed
2	8.3	5/10/12	3.8 (2 wk)	54.0	Died D35 of pneumonia 2º cancer
3	8.4	8/3/12	6.0 (1 mo)	28.8	Died just past D30 of cancer
4	0.0	10/23/12	F 4 (C c)	32.1	Wheelchair-bound to walking; Y1.5 post
4	8.0	10/23/12	5.4 (6 mo)	32.1	RTX; cancer has progressed
5	9.0	2/13/13	8.1 (1 mo)	9.6	Died W6 of cancer
					Breakthrough pain meds reduced by half
6	8.6	9/23/13	7.9 (1 mo)	8.3	by M1; ET from study just after M1 due to
					cancer progression; died just after M3
	Baseli	ne average	Average NF	RS reduction =	Average 1.6 point improvement across BPI
	NR:	S = 8.27	2.05 (24.7%	Improvement)	pain interference items.


Next Steps for RTX Development

Under NIH CRADA

Intractable cancer pain clinical Phase 1/2 trial (intrathecal injection); n~13 patients Phase 1/2 trial for osteosarcoma (intraganglionic injection); n~15 patients

Under Sorrento IND

Intractable cancer pain clinical Phase 1/2 trial (intrathecal injection); n~40 patients

Immunotherapy Programs

G-MAB: Library of Therapeutic Antibodies

Proprietary technology:

RNA amplification used for

library generation

Freedom-To-Operate

Fully human antibodies

Very high library diversity:

2.1 x 10¹⁶ distinct antibodies

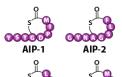
No stacking royalties

High successful screening hit rate

High Value Oncology Targets:

Immune modulation: PD1 and PD-L1

Antibody Drug Conjugates: VEGFR2 and c-Met

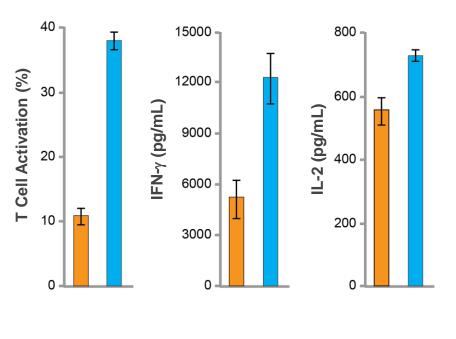


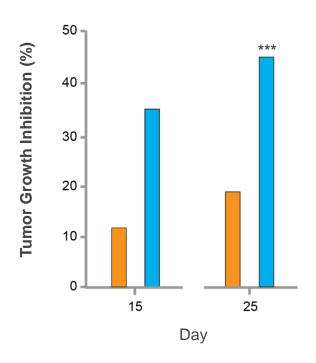
Size of Target Antigen

Most Difficult Targets: G Protein-Coupled Receptors

(GPCRs)

Difficult Targets:


Small Peptides

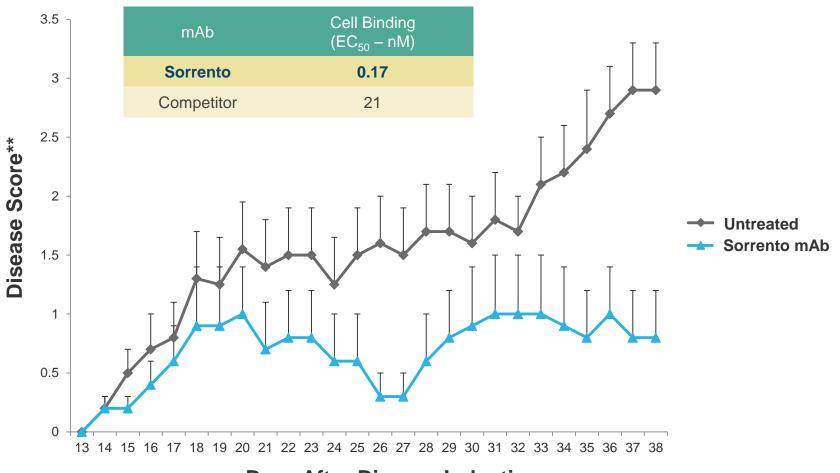


Anti-PD-L1 mAbs Exhibit Potent Activity

Immune Modulation*

Tumor Mouse Model**

Sorrento mAb

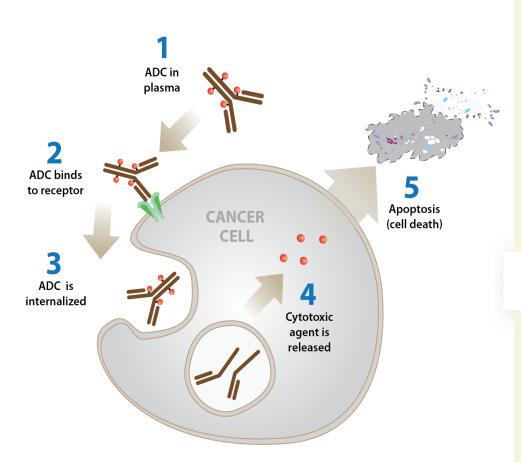


^{*} mAbs @ 0.05 mg/mL

^{**} xenograft model using H1975 human NSCLC cells; % inhibition relative to control mAb treatment

^{**} p<0.05, mean tumor volumes are significantly reduced in STI-A1010 group versus control groups as determined by Mann-Whitney u-test

Potent Antibody against Difficult GPCR Target*


Days After Disease Induction

^{*} Sorrento mAb against C-C Chemokine Receptor 2 (CCR2)

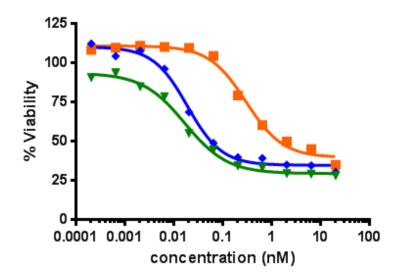
^{**} Experimental Auto-immune Encephalomyelitis (EAE) = murine model of Multiple Sclerosis

Antibody Drug Conjugates (ADCs)

Key Components:

- 1. Target-specific internalizing antibody
- 2. Potent cytotoxic prodrugs
- 3. Linker and conjugation chemistries

Drug released in CANCER CELL

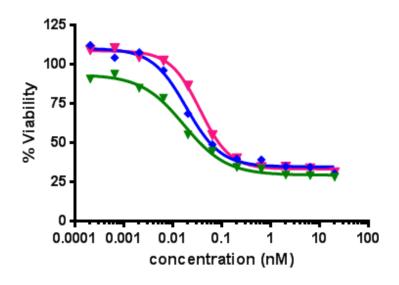


Proprietary High Potency Duostatin Toxins

SKBR3

(Breast Cancer Cell Line)

Duostatins vs. DM1

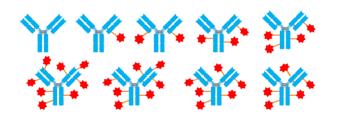


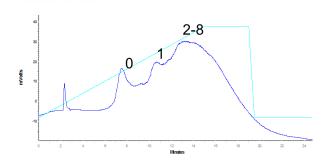
Duostatin toxin 2 (K-lock)

DM1 (conventional; NHS)

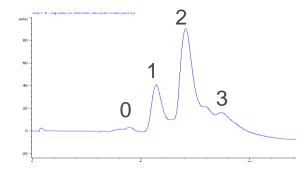
>15x higher potency

Duostatins vs. MMAE

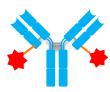


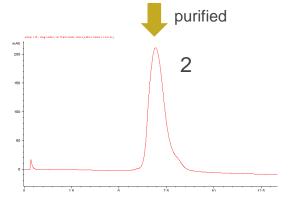

- Duostatin toxin 1 (K-lock)
- Duostatin toxin 2 (K-lock)
- MMAE (conventional; maleimide)

K-Lock Conjugation Enables Homogeneous ADCs


Current industry standard chemistry

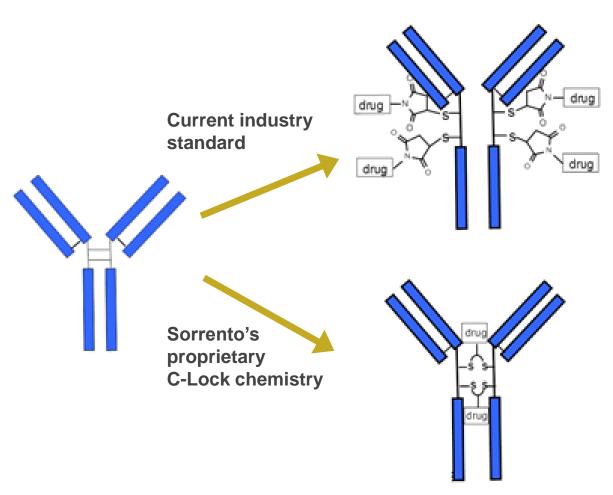
Proprietary K-Lock chemistry





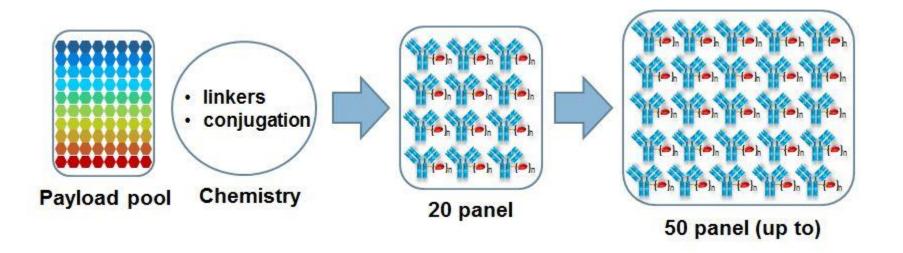
Sorrento's homogenous ADC

No need for:


non-natural amino acids genetic re-engineering enzymatic posttranslational modification

C-Lock Conjugation Stabilizes ADCs

Maleimide conjugation


Destabilizes antibody structure
Reduced target specificity
Altered PK profile
Drug-antibody linkage not stable
Off-target drug effects

C-lock conjugation

Enhances ADC stability
Prolongs PK profile
Reduced off-target effects

Proprietary ADC Screening and Optimization Panels

Fast track to IND

Identification of optimal combination of linker, conjugation chemistry and drug payload essential for efficient and expedited development **from target to candidates**

Investment Highlights

Late-Stage Cancer Drug

Product launch expected in 1H 2016

Addresses multi-billion dollar paclitaxel market

Abbreviated regulatory pathway ("bioequivalence") for approval

Intractable Cancer Pain Treatment

Ongoing Phase 1/2 study
Orphan drug status received
Three potential drug products from same API

Targeted Cancer Immunotherapeutics

First therapeutic antibody candidate in clinic 1H 2016
Proprietary linker/conjugation chemistry for *homogenous* ADC generation
First ADC in clinic 1H 2016

Developing Therapeutic Solutions to Help Man's Life Companions

Animal Health

A Subsidiary of Sorrento

Novel Products Potentially Target Unmet Needs

Ark-001 (Pain assoc/ w Canine Osteosarcoma)

Ark-001 (Pain assoc/ w Canine Osteoarthritis)

Ark-002 (Neuropathic Pain-Navicular Syndrome/Laminitis)

Ark-003 (Idiopathic Cystitis in cats)

Ark-004 (Inflammation and Pain Ocular Abrasion)

Ark-005 (Staph Infections in dogs Dermatitis)

Ark-006 (Mastitis in cows)

Ark-007 (Post Surgical Pain In dogs)

Ark 001, 002, 003 & 004 are RTX-based formulations. Ark 005 & 006 are AIP vaccines (staph).

Disease-Specific Market Factors Small Animals

Disease/Drug	Unmet Need	Competition	Prevalence	Level of Differentiation
Ark-001 (Dogs) Osteosarcoma/Pain	High	Opiates rare use Amputation Alternative interventions unsatisfactory	*83 M Pet dogs 1 in 3 have tumors 5% of all tumors= Osteosarcoma Approximately 1.35 M	Transformative
Ark-001 (Dogs) Osteoarthritis/Pain	Moderate to High	NSAIDs May result in hepatic and GI toxicity	4 M dogs in active NSAID treatment	Transformative Intrathecal inj may allow for coverage of all joints
Ark-005 (Dogs) Recurring dermatitis/infections	Moderate to High	Antibiotics Corticosteroids	**MRSA 1.5-2 % of dogs in community and Vet hospitals	Moderate to significant
Ark-003 (Cats) Interstitial Cystitis	High	Castration/Spaying Anti-anxiety drugs Pheromones	Unknown	TBD May reduce bladder hyperactivity

^{*}APPA 2012 and Canine Cancer.com
**Veterinary Medicine, Dec 1, 2012

Disease-Specific Market Factors Large Animals

Disease/Drug	Unmet Need	Competition	Prevalence	Level of Differentiation
Ark-006 (Cows) Mastitis	High	Antibiotics Mastitis prevention programs	Approximately 9.2M cows and 1/3 infected with mastitis annually	TBD: Vaccine delivery may offer high differentiation potential
Ark-004 (Horses) Ocular Pain/Ocular abrasions	High	Eye drops Antibacterial opthalmic ointments Lidocaine	High No reliable estimates	Moderate to High: Desensitization of nerves may facilitate abrasion healing
Ark-002 (Horses) Laminitis	Moderate to High	Pain Killers including NSAIDs Peripheral vasodilators	*9.2 M horses in US ** 15% will suffer from laminitis in lifetime	Potentially high based on limited results to date

^{*} Making sense of laminitis; Michelle Andersen, Feb 1 2013

^{**} US Horse Industry Statistics- The equestrian channel 2013

Market Valuation of Competitor Companies

	Products on Market	Products in development	Disease Area Focus	Time to market	Market Valuation
ARATANA (PETX)	None	>15	Pain Appetite Stimulants etc	Near Term	\$529 M
KINDRED (KIN)	None	10	Pain Cancer GI, Allergy Inflammation Autoimmune	Near Term	\$295 M
ARK ANIMAL THERAPEUTICS	None	>10	Pain Osteoarthritis Infections Interstitial Cystitis Mastitis Ocular Pain Laminitis	Near Term	IPO TBD

Sorrento

Next-Generation
Cancer Therapeutics

Contact:
Henry Ji
President and CEO
hji@sorrentotherapeutics.com
(858) 668-6923