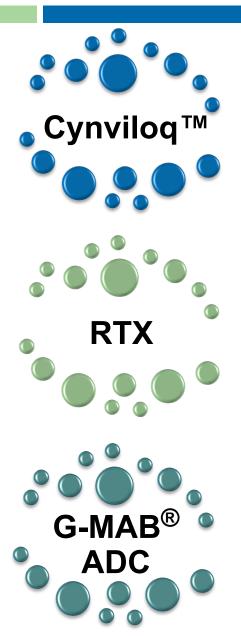


Sorrento Therapeutics

Next-Generation Cancer Therapeutics

December 2013

Safe Harbor Statement


NASDAQ: SRNE

This presentation contains "forward-looking statements" as that term is defined under the Private Securities Litigation Reform Act of 1995 (PSLRA), including statements regarding expectations, beliefs or intentions regarding our business, technologies and products strategies or prospects. Actual results may differ from those projected due to a number of risks and uncertainties, including, but not limited to, the possibility that some or all of the pending matters and transactions being considered by the Company may not proceed as contemplated, and by all other matters specified in Company's filings with the Securities and Exchange Commission, as well as risks inherent in funding, developing and obtaining regulatory approvals of new, commercially-viable and competitive products and product candidates. Sufficiency of the data for approval with respect to Cynviloq™ will be a review issue after NDA filing. These statements are made based upon current expectations that are subject to risk and uncertainty and information available to the Company as of the date of this presentation. The Company does not undertake to update forward-looking statements in this presentation to reflect actual results, changes in assumptions or changes in other factors affecting such forward-looking information. Assumptions and other information that could cause results to differ from those set forth in the forward-looking information can be found in the Company's filings with the Securities and Exchange Commission, including its most recent periodic report. We intend that all forward-looking statements be subject to the safe-harbor provisions of the PSLRA.

Management Team

Henry Ji, Ph.D. President & CEO, and Director	 Inventor of G-MAB® Technology President & CEO of Stratagene Genomics VP of CombiMatrix and Stratagene
Vuong Trieu, Ph.D. Chief Scientific Officer, and Director	 Founder and CEO of IgDraSol Co-inventor of IP covering Abraxane[®] Instrumental in the approval of Abraxane[®] Celgene acquired Abraxis Biosciences (Abraxane[®]) for > \$3 billion
George Uy Chief Commercial Officer	 CCO of IgDraSol Directed the launches of Abraxane[®], Xeloda[®] & Fusilev[®] Built commercial infrastructures and organizations in startup companies
David (Zhenwei) Miao, Ph.D. Chief Technology Officer	 President and CSO of Concortis BioSystems Co-inventor of IP covering ADC technologies Head of Chemistry at Ambrx
Richard Vincent EVP, CFO, and Director	 \$430M sale of Elevation to Sunovion-Dainippon Meritage Pharma option agreement with ViroPharma (\$90M upfront + milestones) \$310M sale of Verus asthma program to AstraZeneca Elan: various acquisitions and divestitures with aggregate values in excess of \$300M

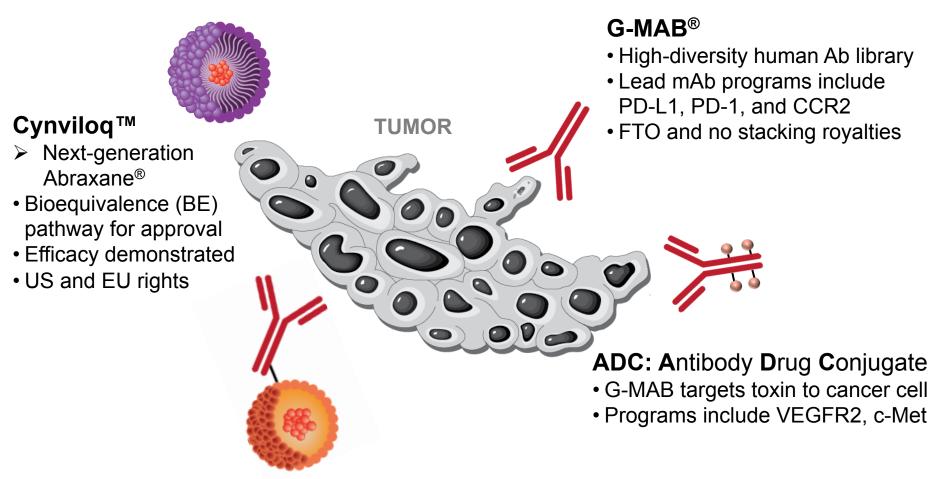
Investment Highlights

Late Stage Oncology Drug with Exclusive US and EU Rights

- Addresses multi-billion dollar paclitaxel market
- Abbreviated regulatory pathway ("bioequivalence") for approval
- Bioequivalence registration trial in 2014 (study direct costs ~ \$5M)
- Product launch expected in 1H 2016

Intractable Pain in Advanced Cancer

- Ongoing Phase 1/2 study
- Orphan drug status received
- Two potential drug products from same API (Resiniferatoxin)


Therapeutic Antibody Engine

- G-MAB[®] library generated using patented RNA-based technology
- First antibody drug candidate in clinic 1H 2015

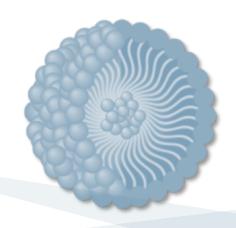
Targeted Drug Delivery (ADC)

- G-MAB® antibody as specific targeting warhead
- Proprietary toxins as potent tumor killing payload
- Proprietary linker/conjugation chemistry for <u>homogenous</u> ADC generation

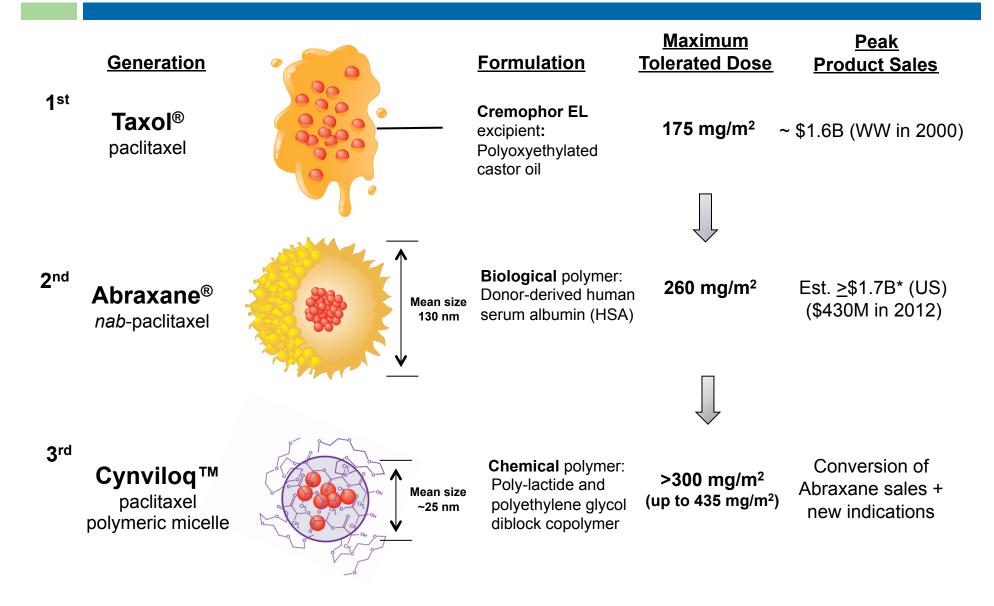
Sorrento's Next-Generation Cancer Therapeutics

AfDC: Antibody formulated Drug Conjugate

- G-MAB targets approved chemotherapeutics to the tumor
- Effective against heterogeneous tumors


Pipeline

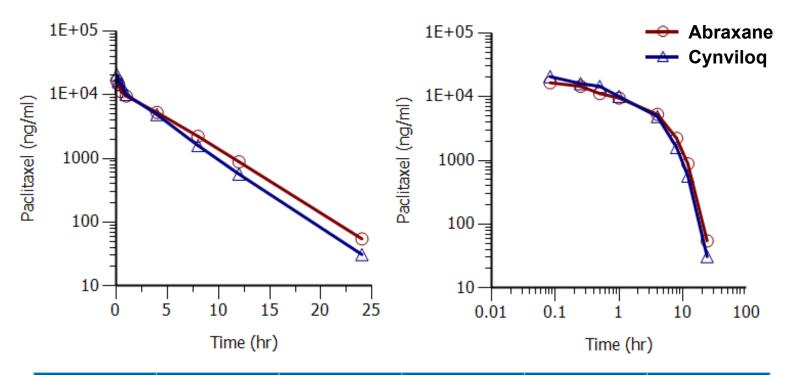
	INDICATION	(PHASE 2	PHASE 3 NDA FILING	
	Metastatic Breast Cancer Non-Small Cell Lung Cancer 505(b)	(2) Bioequi	valence	1H 2014 1H 2015	
Cynviloq™	Pancreatic Cancer (BE* or sNDA)				
	Bladder Cancer (sNDA)			Multiple	
	Ovarian Cancer (sNDA)				
		PHASE 1	PHASE 2	Otrosto ni o	
RTX	Refractory Pain in Cancer Patients	In progress	1H 2015	Strategic	
	INDICATION > TARGET PRECLINICAL	PHASE 1			
	Oncology > PD-L1	1H 2015		Partnership	
G-MAB®	Oncology > PD-1	2H 2015			
	Oncology/Inflammation > CCR2, CXCR3	1H 2016		Opportunities	
ADC	Oncology > VEGFR2, c-Met, CXCR5, EGFR	2H 2015			


⁶

Lead Product Opportunity

Cynviloq is the 3rd Generation Paclitaxel Therapy

Cynviloq is a High Value Proposition


- 1. Exclusive US and EU Rights
- 2. Cynvilog efficacy demonstrated in Phase 2 and Phase 3 studies
 - a. Approved and marketed under brand name Genexol-PM in S. Korea
- 3. FDA concurred
 - a. Available data support pursuing 505(b)(2) regulatory pathway
 - b. Bioequivalence (BE) study sufficient for approval of indications in Abraxane label (MBC and NSCLC)
- 4. Large market opportunity
 - a. Abraxis (Abraxane) sold to Celgene for > \$3B
 - b. \$1.7B in projected US peak revenues for Abraxane

Clinical Efficacy & Safety Summary

Total number of patients across all trials: 1,260

- **Phase 1:** Trials established higher MTD in US Dana Farber Cancer Inst, Russia, & S. Korea (total n=80)
 - >300 mg/m² (q3w) vs. 175 mg/m² (Taxol; weekly) and 275 mg/m² (Abraxane; q3w)
- **Phase 2:** Completed trials in MBC, NSCLC, PC, OC, BC; in US Yale Cancer Center, Russia, S. Korea (total n=259)
 - Data suggestive of efficacy comparable to historic data for Abraxane and superior to historic Taxol data or Standard-of-Care
 - Possible Phase 3 sNDA programs in these tumor types
- **Phase 3:** Ongoing trial for MBC in S. Korea (total n=209; Cynvilog n=105)
 - GPMBC301. An Open-label, Randomized, Parallel, Phase 3 Trial to Evaluate the Efficacy and Safety of Cynviloq compared to Genexol[®] (Paclitaxel with Cremophor EL) in Subjects with Recurrent or Metastatic Breast Cancer)
 - Interim analysis suggests ORR superior to Taxol and comparable to historic Abraxane efficacy
 - Efficacy and safety data supportive of 505(b)(2) BE submission
- **PM-Safety:** Completed for MBC and NSCLC (total n=502)
 - Efficacy and safety data supportive of 505(b)(2) BE submission
- Phase 2b (IIS): Chemo-naïve Stage IIIb/IV NSCLC vs Taxol in S. Korea (total n=276; Cynvilog n=140)
 - 230 mg/m² + cis (q3w) vs. Taxol 175 mg/m² + cis; non-inferiority established
- **Phase 2 (IIS):** 1st line treatment of OC vs Taxol in S. Korea (total n=100; Cynviloq n=50)
 - □ 260 mg/m² + carbo (g3w) vs. Taxol 175 mg/m² + carbo; non-inferiority established

Equivalent Pharmacokinetics in Mice

Drug	HL (h)	T max (h)	AUCinf (h*ng/ mL)	Vz (mL/kg)	CI (mL/h/kg)
Abraxane	2.99	0.08	61561.33	2103.71	487.32
Cynviloq	2.83	0.08	58151.31	2103.58	515.90

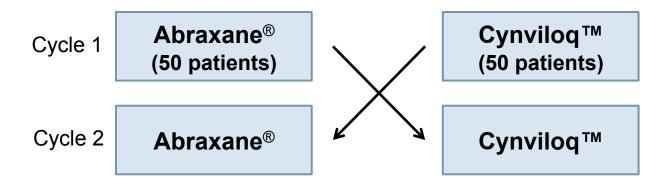
IV bolus at 30 mg/kg; n = 3

Comparable Pharmacokinetics in Human

Data from 2 separate studies (3 h infusion, 135 mg/m² dose, n=3)

	C _{max} (ng/ml)	AUC _{inf} (ng/ml*h)	Half-Life (hr)	Cl (L/hr/m²)
Cynviloq™	1357	5473	12.7	25.5
Abraxane [®]	1392	5654	12.9	27.4

Simulated PK Parameters Supportive of BE: Cynviloq vs. Abraxane


Comparison of mean non-compartmental pharmacokinetic parameters of Cynviloq (T) and Abraxane (260 mg/m²) at 30 min infusion time:

Cmax (ng/ml		Ratio Cmax(T)/Cmax(R)	AUCinf (ng*h/mL)	Ratio AUCinf(T)/AUCinf(R)	
Cynviloq (Simulated PK)	19486	00.6%	22198	400 20/	
Abraxane (Actual PK)*	19556	99.6%	20324	109.2%	

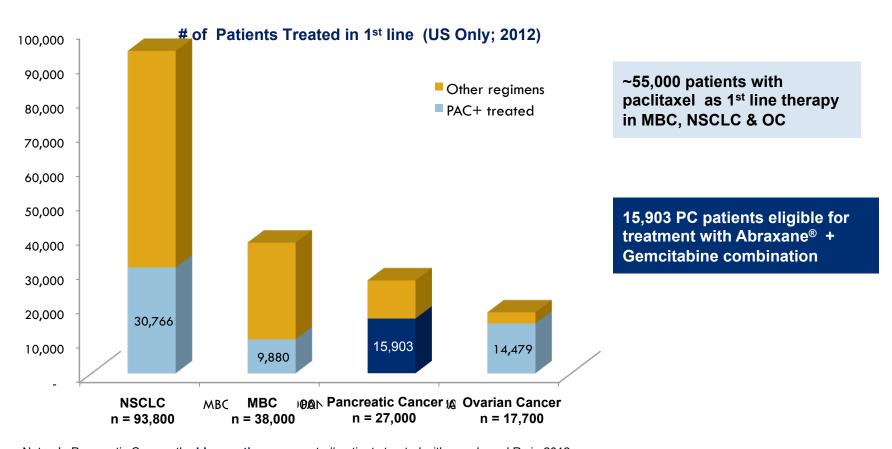
- PK BE was calculated as 95% confidence interval (CI)
- Ratio T/R (Cmax and AUCinf) within 80-125% (FDA Guidance for establishing BE)

Bioequivalence = Efficient Pathway to Market

- Bioequivalence registration study in breast cancer patients (2014)
 - 12 months of duration (including patient recruitment)
 - Direct trial cost ~\$5M

Key Parameters*:

- Dose: 260 mg/m²
- Infusion time: 30 min
- Duration: 3 weeks + crossover for 3 weeks
- Endpoints: AUC and Cmax (90% CI)


Cynviloq Advantages

	Cynviloq™	Abraxane [®]	Taxol [®]	Cynviloq Advantage
Maximum Tolerated Dose (mg/m²)	>300	260	175	Potential for higher efficacy
Rapid reconstitution: no foaming concerns			•	Convenience for busy practices and pharmacies
No donor-derived human serum albumin (HSA)			•	No viral / prion concerns
Convenient storage conditions			•	No requirement for controlled temp storage
No microbial growth				Chemical polymer
Cremophor-free		•		Reduced side effects
Dosing	q3w	q3w* & weekly**	q3w & weekly	Exploits PK advantage @ higher dose

* = MBC; ** = NSCLC & PC

Cynviloq Market Opportunity

~70,000 patients treated with paclitaxel-based regimen in 1st line

Note: In Pancreatic Cancer, the blue portion represents # patients treated with gem-based Rx in 2012

Sources: US information, SEER Annual Cancer Review 1975-2006; US Census; Mattson Jack; UHC and Medicare Claims; IntrinsiQ; Synovate Tandem. WHO mortality database 2008 http://www.who.int/whosis/whosis/. World Population Prospects. The 2008 Revision. UN Population Division 2009. http://esa.un.org/unpp/. Roche-Genentech Clinical, Patient Chart Audits. Total patient numbers represent treatable population.

1st Line patient estimates from IntrinsiQ 2012 Monthly LOT Diag Combo.

Potential to Expand Label Indications – For Example: 2nd Line Bladder Cancer

	Cynviloq Phase 2 (Korea)* 260-300 mg/m² q3w n=34#	Best Supportive Care Phase 2 (Japan) **/ Phase 3 (EU)*** n=23** / n=108***
Overall Response Rate (ORR)	21%	- / 0%***
Progression Free Survival	2.7 M	- / 1.5 M***
Overall Survival	6.5 M	2.3 M** / 4.3 M***

Summary:

- High unmet need no FDA-approved 2nd line drug
- Demonstrated clinical Overall Response Rate (ORR)
- Phase 3-ready for development as 2nd line chemotherapy in patients refractory to platinum-based therapy

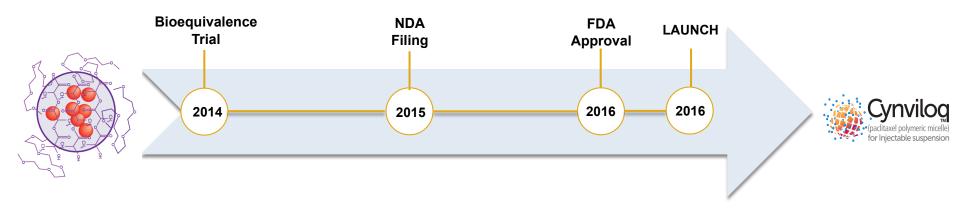
^{*} Invest New Drugs (2012) 30:1984–1990

[#] advanced urothelial carcinoma patients refractory to gemcitabine and cisplatin

^{**} AUA- San Diego May 4th-8th; *** JCO (2009): 4454-61

Next Steps for Cynviloq

1. Bioequivalence (BE) trial: **2014**

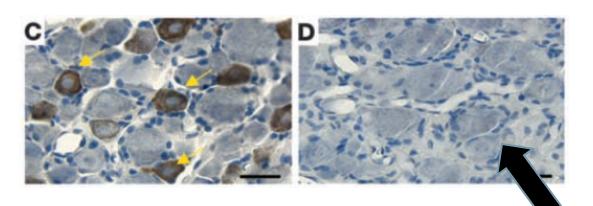

2. NDA filing: **2015**

3. Approval: **2016**

a. MBC and NSCLC

b. Future Abraxane indications (Pancreatic cancer and Melanoma)

- 4. Product launch for MBC and NSCLC: 2016
- 5. sNDA planning for label expansion into Bladder and Ovarian cancers



Expanded Clinical Pipeline with Multiple Opportunities

Resiniferatoxin (RTX):

Non-opiate Drug Candidate for Treating Cancer Pain

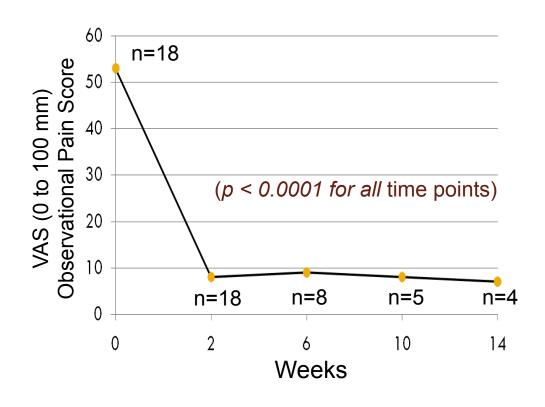
Cross section of spinal cord after treatment*

Pharmacology:

Ultra potent agonist of the TRPV1 receptor

< 2 pM TRPV1 receptor binding

Binding in primate ex-vivo spinal cord


- dorsal root ganglion resiniferatoxin Ki = 309 pM
- dorsal horn resiniferatoxin Ki = 349 pM

RTX induces apoptosis of TRPV1expressing afferent nerves.

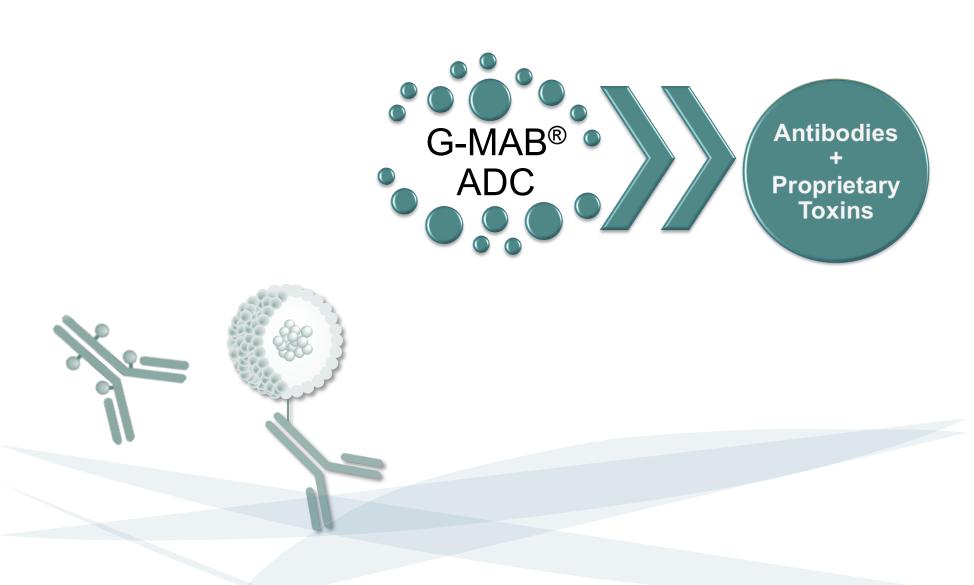
"ADC"-like killing, but no antibody-mediated targeting needed

* Adapted from Karai et al. 2004 20

Single Injection Addresses Cancer Pain in Dogs

- Single intrathecal injection
- Permanent ablation of nerves
- Attractive Therapeutic Effect
 - All subjects responded
 - Personality & mood of animals visibly improved
 - No opioid-associated side effects

Veterinary Market: Strategic Partnership Opportunity


Next Steps for Dual Pathway of RTX Development

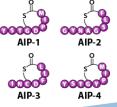
2014

- Intractable cancer pain clinical Phase 1/2 trial (intrathecal injection); n~40 patients
- 2. Phase 1/2 trial for **intraganglionic injection** (osteosarcoma); n~15 patients (under NIH CRADA)

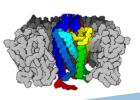
Pre-IND Immunotherapy Programs

G-MAB®: Library of Therapeutic Antibodies

- Proprietary technology
 - RNA amplification used for library generation
 - Freedom-To-Operate
- No stacking royalties

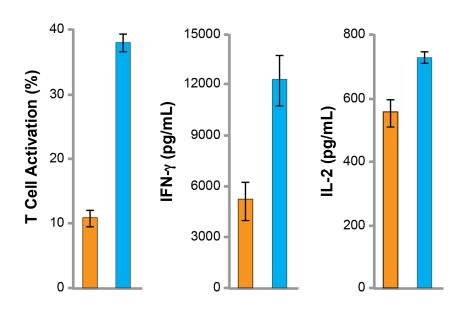

- Very high library diversity:
 2.1 x 10¹⁶ distinct antibodies
- Fully human antibodies
- High successful screening hit rate

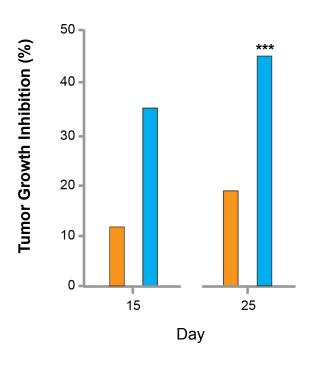
High Value Oncology Targets:


Immunomodulation: PD1 and PD-L1

Antibody Drug Conjugates: VEGFR2 and c-Met

Most Difficult Targets:G Protein-Coupled Receptors

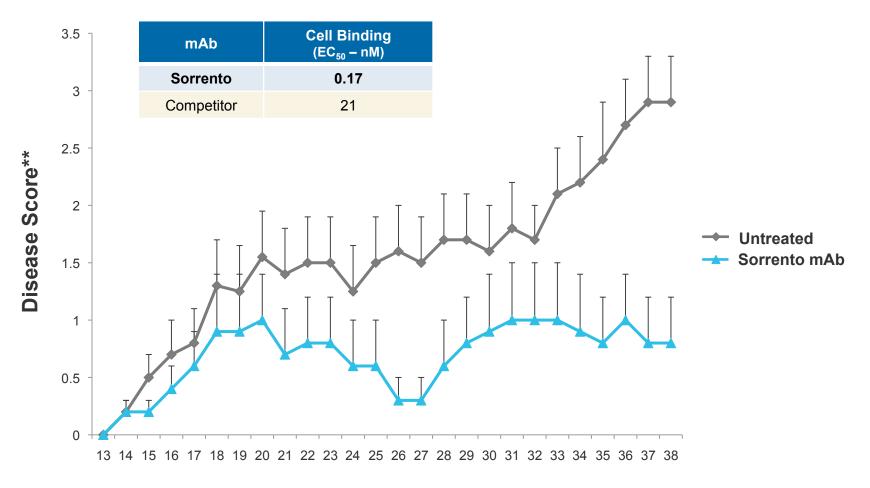

(GPCRs)


Size of Target Antigen

Anti-PD-L1 mAbs Exhibit Potent Activity

Tumor Mouse Model**

Competitor mAb

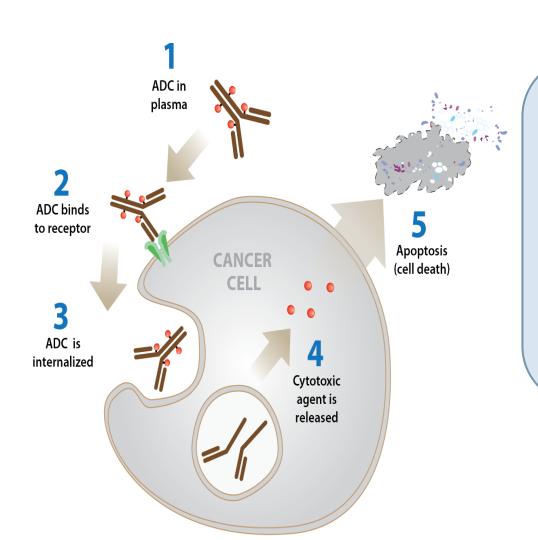

Sorrento mAb

^{*} mAbs @ 0.05 mg/mL

^{**} xenograft model using H1975 human NSCLC cells; % inhibition relative to control mAb treatment

^{***} p<0.05, mean tumor volumes are significantly reduced in STI-A1010 group versus control groups as determined by Mann-Whitney u-test

Potent Antibody against Difficult GPCR Target*

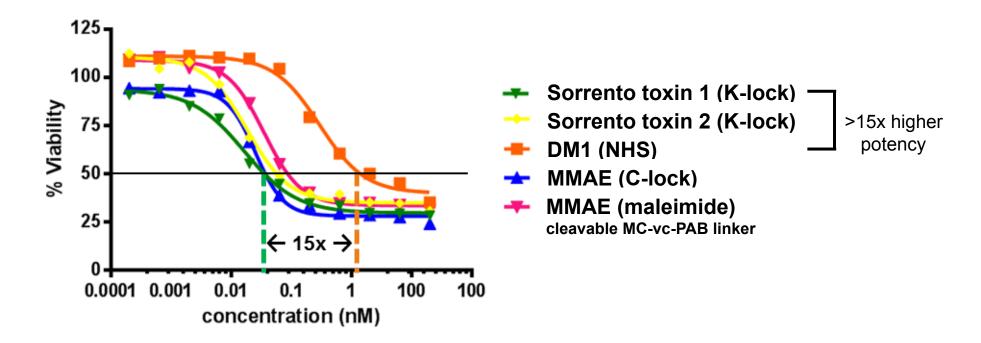


Days After Disease Induction

^{*} Sorrento mAb against C-C Chemokine Receptor 2 (CCR2)

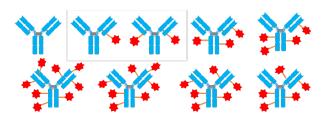
^{**} Experimental Auto-immune Encephalomyelitis (EAE) = murine model of Multiple Sclerosis

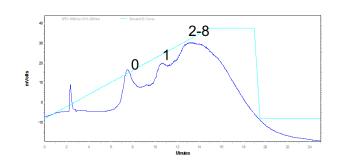
Antibody Drug Conjugates (ADC)


Key Components:

- Target-specific internalizing antibody
- 2. Potent cytotoxic prodrugs
- 3. Linker and conjugation chemistries

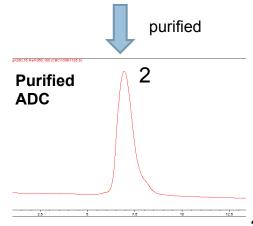
Drug released in CANCER CELL

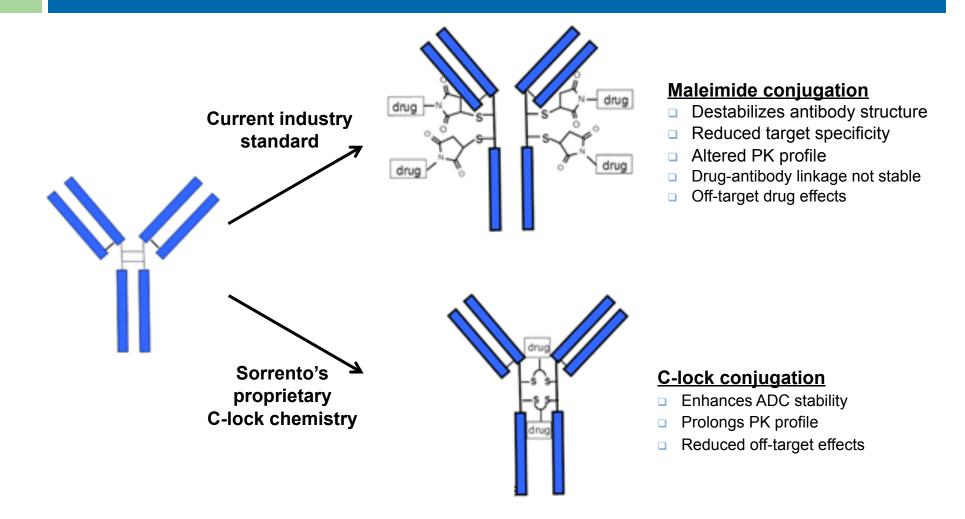

Proprietary Toxin Potency Higher than DM1



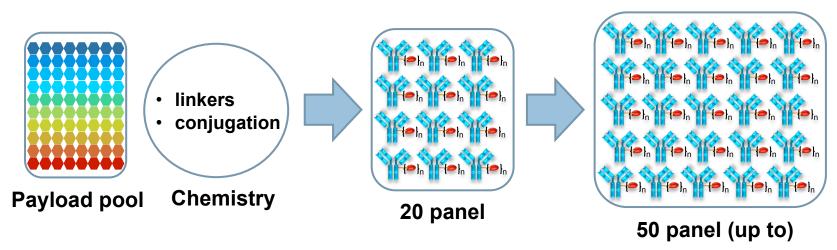
K-lock Conjugation Enables Homogeneous ADCs

Current industry standard chemistry


Sorrento's proprietary K-lock chemistry

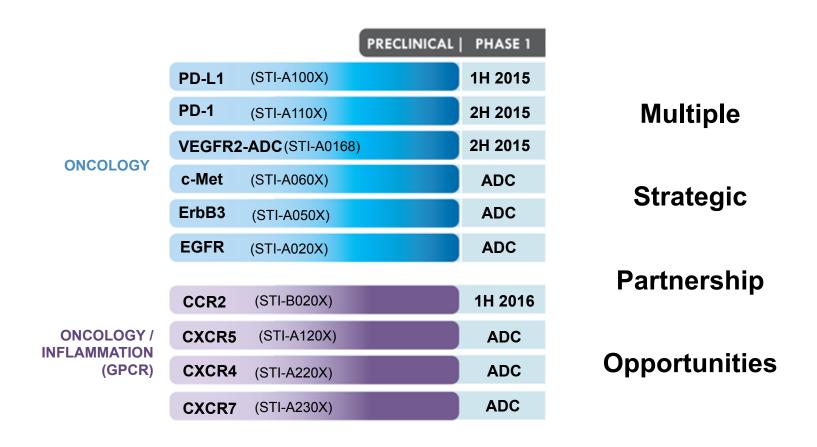

20 0

Sorrento's homogenous ADC

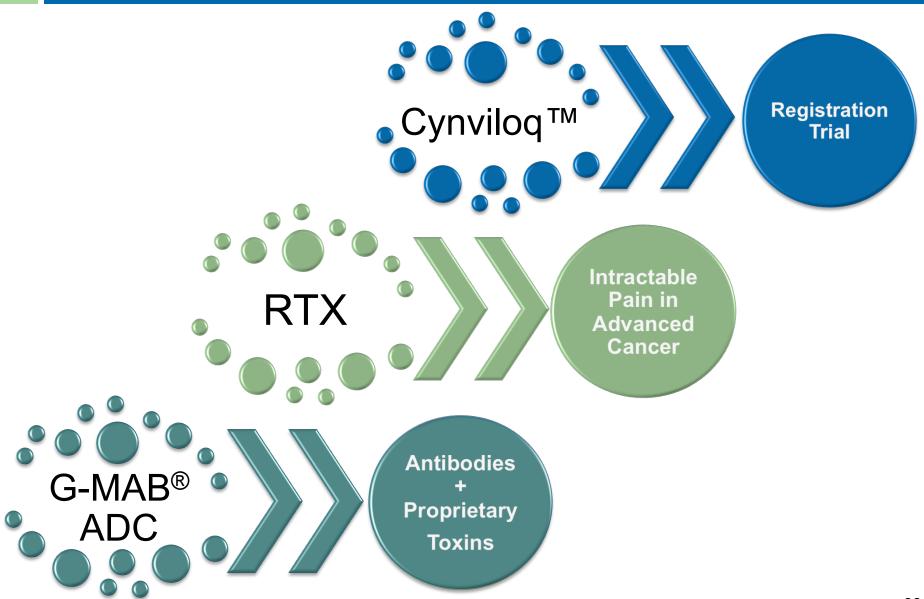


Irreversible C-lock-stabilized ADCs

Proprietary ADC Screening and Optimization Panels



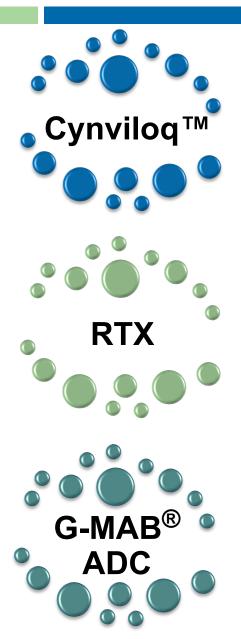
ADCs consist of many moving parts.


Identification of optimal linker, conjugation chemistry and drug payload combination essential for efficient and expedited development

- Primary screen for discovery of lead ADCs ("20-panel")
 - Initial ADCs via rationale design with linker/conjugation technologies and payload pool
- Advanced screen for generation of ADC product candidates ("50-panel")
 - Optimization of payloads, linkers and conjugation chemistries
 - Potential expansion to new mechanism of action (MOA) drug payloads

G-MAB® and ADC Pipeline

Positioned to Become Oncology Leader



Small Molecule Oncology Drug, Antibody Library and ADC Company Valuations

Company	Small Molecule Oncology Drug	Antibody Platform	Targeted Drug Delivery	Mkt Cap*
Puma: PBYI Pre-revenue	MBC (Phase 3)			~\$1.2B
Clovis: CLVS Pre-revenue	NSCLC, MBC (Phase 1)			~\$1.6B
MorphoSys: MOR.DE Pre-revenue		Antibody Library		~\$1.6B
CAT: Acquired (2006) Pre-revenue		Antibody Library		~\$1.4B
Domantis: Acquired (2007) Pre-revenue		Antibody Library		~\$450M
Seattle Genetics: SGEN Product sales + royalty			ADC	~\$5.1B
ImmunoGen: IMGN Royalty only			ADC	~\$1.3B
Sorrento: SRNE	NSCLC, MBC (Ph3/Registration Trial)	Antibody Library	ADC & AfDC	~\$180M

^{*} based on publicly-available information (11/14/13)

Investment Highlights

Late Stage Oncology Drug with Exclusive US and EU Rights

- Addresses multi-billion dollar paclitaxel market
- Abbreviated regulatory pathway ("bioequivalence") for approval
- Bioequivalence registration trial in 2014 (study direct costs ~ \$5M)
- Product launch expected in 1H 2016

Intractable Pain in Advanced Cancer

- Ongoing Phase 1/2 study
- · Orphan drug status received
- Two potential drug products from same API (Resiniferatoxin)

Therapeutic Antibody Engine

- G-MAB[®] library generated using patented RNA-based technology
- First antibody drug candidate in clinic 1H 2015

Targeted Drug Delivery (ADC)

- G-MAB® antibody as specific targeting warhead
- Proprietary toxins as potent tumor killing payload
- Proprietary linker/conjugation chemistry for <u>homogenous</u> ADC generation

Sorrento Therapeutics

Next-Generation Cancer Therapeutics

Contact:
Henry Ji
President and CEO
hji@sorrentotherapeutics.com
(858) 668-6923

